• Title/Summary/Keyword: silver nano-particles

Search Result 95, Processing Time 0.038 seconds

Preparation of Lead-free Silver Paste with Nanoparticles for Electrode (나노입자를 첨가한 전극용 무연 silver 페이스트의 제조)

  • Park, Sung Hyun;Park, Keun Ju;Jang, Woo Yang;Lee, Jong Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.4
    • /
    • pp.219-224
    • /
    • 2006
  • Silver paste with low sintered temperature has been developed in order to apply electronic parts, such as bus electrode, address electrode in PDP (Plasma Display Panel) with large screen area. In this study, nano-sized silver particles with 10-30 nm were synthesized from silver nitrate ($AgNO_3$) solution by chemical reduction method and silver paste with low sintered temperature was prepared by mixing silver nanoparticles, conventional silver powder with the particle size 1.6 um and Pb-free frit. Conductive thick film from silver paste was fabricated by screen printing on alumina substrate. After firing at $540^{\circ}C$, the cross section and surface morphology of the thick films were analyzed by FE-SEM. Also, the sheet resistivity of the fired thick films was measured using the four-point technique.

A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구)

  • Jo, Yong-Min;Park, Sung-Jun
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.

Sintering Characteristics of Au and Ag Nanoparticles Prepared by Inert Gas Condensation (불활성 증발 응축방법으로 제조된 금과 은 나노입자의 소결특성)

  • Lee, Seung-Hyun;Min, Dong-Ryoul;Lee, Kwang-Min
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.165-172
    • /
    • 2007
  • The purpose of this study was to analyze the sintering characteristics of gold and silver nanoparticles. In this study, gold and silver nanoparticles were prepared by using Inert Gas Cndensation (IGC). The sintering temperatures for gold and silver nanoparticles were $100{\sim}1000^{\circ}C\;and\'100{\sim}500^{\circ}C$, respectively. The sintering characteristics of gold and silver nanoparticles prepared by IGC were evaluated by X-ray diffraction(XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Gold and silver nanoparticles with the size of $1{\sim}100\;nm\;and\;10{\sim}100\;nm$, respectively, were obtained. The size of sintered gold and silver nanoparticles increased with an increase in the sintering temperature. XRD data showed that silver nanoparticles were similar with polycrystal single-phase.

Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성)

  • Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.

Study of Anti-bacterial Properties for Impregnated Activated Carbon by Silver Nano-particles (은나노 입자가 첨착된 활성탄의 항균특성에 관한 연구)

  • Lee, Chul-Jae;Kim, Dong-Yeub;Kim, Byung-So
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.396-399
    • /
    • 2007
  • In present work, the anti-bacterial effect of silver/activated carbon (Ag/C) composites prepared by the ${\gamma}$-irradiation of $AgNO_3$ solution on Escherichia coli (E. coli) has been studied. Characteristics of the Ag/C composites were identified by scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS). The inhibitory concentration of E. coli was found to be 0.387 ppm and the sterilizing concentration for the tested organism was 1.017 ppm. These results support the evidence that Ag/C composites have strong antibacterial activity to E. coli.

Study of Ag-Doped Bioactive Ceramic Composites (은이 첨가된 생체 활성 세라믹 복합체 연구)

  • Nam, Ki-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.761-764
    • /
    • 2009
  • Ag-Doped bioactive ceramic composites were prepared by colloidal silver solution. The physical properties of colloidal silver solution and Ag-Doped bioactive ceramic composites were characterized by Scanning electron microscopy(SEM), X-Ray Diffractometer(XRD) and Raman spectrophotometer respectively. According to XRD, we have identified that the chloride ion was chemically attached silver nano particles. SEM studies showed that silver chloride phases were homogeneously distributed on the Ag-Doped bioactive ceramic composites surface. Finally, we concluded that the silver chloride phase on the Ag-Doped bioactive ceramic composites surface was strongly prevent formation of Ag-hydroxyapatite.

Preparation and Properties of the Intra-type Al2O3Ag Nanocomposites (입내 분산형 Al2O3/Ag 나노복합체의 제조와 특성)

  • Cheon, Sung-Ho;Han, In-Sub;Awaji, Hideo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.208-213
    • /
    • 2007
  • Alumina/silver ($Al_2O_3/Ag$) nanocomposites with Ag content up to 9 vol% were prepared from nanopowder by soaking method using ${\gamma}-Al_2O_3$ of needle type and spark plasma sintering (SPS). The mechanical properties of specimens were investigated three-point flexural strength and toughness as a function of the Ag contents. The maximum flexural strength of the alumina/silver nanocomposite was 850 MPa for the 1 vol% composite, and also higher than monolith alumina as about 800 MPa at 3, 5, and 7 vol% Ag contents. Fracture toughness by single edged V-notch beam (SEVNB) was $4.05MPa{\cdot}m^{1/2}$ for the 3 vol% composite and maintained about $4.00MPa{\cdot}m^{1/2}$ at 5, and 7 vol% Ag content. Microstructure of fracture surface for each fracture specimens was observed. Due to the inhibition effect of alumina grain growth, the average grain size of nanocomposites depends on the content of Ag nano particles. The fracture morphology of nanocomposite with dislocation (sub-grain boundary) by silver nano-particles of second phases in the alumina matrix also showed transgranular fracture-mode compare with intergranular of monolith alumina. Thermal conductivity of specimens at room temperature was about 40 W/mK for the 1 vol% Ag content.

A Study on Synthesis and Dispersion of Silver Nano Particle Using Trisodium Citrate (Trisodium Citrate을 이용한 은 나노입자의 합성 및 분산성에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.772-779
    • /
    • 2016
  • Silver nanoparticles were prepared by reacting silver nitrate and trisodium citrate in an aqueous solution. Their size and shape were investigated by scanning electron microscopy (SEM). The synthesis was carried with different silver nitrate concentration, addition of TSC, solvent, surfactant, ultrasonication, and dispersing agent. With higher concentration of silver nitrate or TSC, the particles became large or agglomerated. The SEM results showed that the nanoparticles have spherical and pseudospherical shape with a narrow size distribution. The hydrophobic solvent did not affect the dispersibility, but the hydrophilic solvent enhanced it. The addition of HPMC surfactant caused the size to increase (50-100 nm) with non-uniform shapes and partial agglomeration. The dispersibility was significantly improved by ultrasonication for over 3 hours after the addition of a dispersing agent. Complete dispersion was achieved by adding the dispersant, and the nanoparticle sizes were as follows: 30-40 nm (BYK-182) < 42-78 nm (BYK-192) < 51-113 nm (BYK-142). The nanoparticles were 38.45-46.28 nm after the addition of 2-4 wt% TSC in 0.002 M silver nitrate solution.