• Title/Summary/Keyword: silver indium sulfide ($AgInS_2$) epilayer

Search Result 5, Processing Time 0.022 seconds

Temperature dependence of photocurrent spectra for $AgInS_2$ epilayers grown by hot wall epitaxy

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.123-124
    • /
    • 2007
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the liteniture. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The temperature dependence of the energy band gap of the $AgInS_2$ obtained from the photocurrent spectrum was well described by the Varshni's relation, $E_g(T)=\;E_g(0)\;eV-(7.78\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;116\;K\;K)$. Also, Eg(0) is the energy band gap at 0 K, which is estimated to be 2.036 eV at the valence band state A and 2.186 eV at the valence band state B.

  • PDF

Temperature dependence of photocurrent for the AgInS2 epilayers grown by hot wall epitaxy (Hot Wall Epitaxy 방법에 의해 성장된 AgInS2 박막의 광전류 온도 의존성)

  • Park, Chang-Sun;Hong, Kwang-Joon;Lee, Sang-Youl;You, Sang-Ha;Lee, Bong-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • A silver indium sulfide ($AgInS_{2}$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, ${\Delta}cr$, and the spin orbit splitting, ${\Delta}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.

Opto-electric properties for the $AgInS_2$ epilayers grown by hot wall epitaxy (Hot wall epitaxy법에 의해 성장된 $AgInS_2$ 박막의 광전기적 특성)

  • Lee, K.G.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.267-270
    • /
    • 2004
  • A silver indium sulfide($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high qualify crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks. are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\ddot{A}cr$, and the spin orbit splitting, $\ddot{A}so$, have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_g(T)$, was determined.

  • PDF

Growth and photocurrent properties for the $AgInS_{2}$ epilayers by hot wall ep itaxy (Hot wall epitaxy 방법에 의한 $AgInS_{2}$ 박막의 성장과 광전류특성)

  • Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.92-96
    • /
    • 2002
  • A silver indium sulfide $(AgInS_{2})$ epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_{2}$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-ta-band transition. The valence band splitting of $AgInS_{2}$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\Delta_{cr}$, and the spin orbit splitting, $\Delta_{so.}$ have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}(T)$, was determined.

  • PDF

Growth and Photocurrent Properties for the AgInS2 Epilayers by Hot Wall Epitaxy (Hot wall epitaxy방법에 의한 AgInS2 박막의 성장과 광전류 특성)

  • Kim, H.S.;Hong, K.J.;Jeong, J.W.;Bang, J.J.;Kim, S.H.;Jeong, T.S.;Park, J.S.
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.587-590
    • /
    • 2002
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the literature. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The crystal field splitting, $\Delta_{cr}$ , and the spin orbit splitting, $\Delta_{so}$ , have been obtained to be 0.150 eV and 0.009 eV at 10 K, respectively. And, the energy band gap at room temperature has been determined to be 1.868 eV. Also, the temperature dependence of the energy band gap, $E_{g}$(T), was determined.d.