• Title/Summary/Keyword: silver coating

Search Result 166, Processing Time 0.028 seconds

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Tin and Zinc Films (주석 및 아연 박막이 코팅된 베어링 표면의 구름 저항 거동에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.51-58
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure tin and zinc coated 52100 bearing steel. Pure tin coatings ranging from 30 nm to 30,000 nm and pure zinc coatings ranging from 500 nm to 52,000 nm were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the effect of coating thickness on the tribological rolling behavior. Results showed that the existence of optimum film thickness which revealed minimum rolling resistance was discovered for tin and zinc coating. The compatibility of coating matehal to iron showed no significant effect on the rolling resistance behavior. The hardness of coating material revealed significant influence to the rolling resistance behavior.

  • PDF

Electrochemical Characteristics of Metal Coated Graphite for Anodic Active Material of Lithium Secondary Battery (금속 코팅된 흑연 입자로 제조된 전극의 전기화학적 특성)

  • Choi, Won-Chang;Lee, Joong-Kee;Byun, Dong-Jin;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • Various kinds of metals were coated on synthetic graphite in order to investigate the relationship between film characteristics and their electrochemical performance. Gas suspension spray coating method was employed for the coating of synthetic graphite. In our experimental range, all of the metal coated synthetic graphite showed the higher capacity than that of raw material at high C-rate mainly due to decrease in impedance of passivation film. In cyclic voltammetry experiments, silver-coated and tin-coated graphite anodes found the lithium-alloy reaction. Considering smaller amount of metal coating, the most increase in discharge capacity was caused by improvement of conductivity of the electrode. When single-component metal was coated, silver-coated graphite anode exhibited the highest discharge capacity and better cycleability. Double components of silver-nickel coated active material showed the highest discharge capacity, rate capability and the best cycle performance in the range of our experiments.

Silver Nanowire Anode-Based, Large-Area Indium Tin Oxide-Free Organic Photovoltaic Cells Fabricated by the Knife Coating Method (나이프 코팅 기법으로 제작한 은 나노와이어 투명전극 기반의 대면적 ITO-Free 유기 태양전지)

  • Han, Kyuhyo;Kim, Gunwoo;Lee, Jaehak;Seok, Jaeyoung;Yang, Minyang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Silver nanowire (AgNW) is a material that is increasingly being used for transparent electrodes, as a substitute for indium tin oxide (ITO), owing to its flexibility, high transmittance to sheet resistance ratio, and simple production process. This study involves manufacturing large-area organic photovoltaic cells (OPVs) deposited on AgNW electrodes. We compared the efficiency of OPVs with ITO and AgNW electrodes. The results verified that an OPV with an AgNW electrode performed better than that with an ITO electrode. Furthermore, by using the knife coating method, we successfully fabricated large-area OPVs without the loss of efficiency. Use of AgNW instead of ITO demonstrated that an OPV could be produced on various substrates by the solution process method, dropping the productions costs significantly. Additionally, by using the knife coating method, the process time and amount of wasted solution are reduced. This leads to an increase in the efficient fabrication of the OPV.

Novel Composite Membranes Comprising Silver Salts Physically Dispersed in Poly(ethylene-co-propylene) for the Separation of Propylene/Propane

  • Kim, Jong-Hak;Min, Byoung-Ryul;Kim, Yong-Woo;Kang, Sang-Wook;Won, Jong-Ok;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2007
  • Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.

Ecotoxicity Assessment of Silver Nanomaterials with Different Physicochemical Characteristics in Diverse Aquatic Organisms (다양한 특성의 은나노물질이 수생생물에 미치는 독성영향평가)

  • Hong, Nam-Hui;Jung, Youn-Joo;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.183-192
    • /
    • 2016
  • Silver nanomaterials have been intensively applied in consumer products of diverse industrial sectors because of their strong biocidal properties and reported to be hazardous to aquatic organisms once released in the environment. Nanomaterials including sliver, are known to be different in toxicity according to their physicochemical characteristics such as size, shape, length etc. However studies comparing toxicity among silver nanomaterials with different physicochemical characteristics are very limited. Here, toxicities of silver nanomaterials with different size (50, 100, 150 nm), length (10, $20{\mu}m$), shape (wire, sphere), and coating material (polyvinylpyrrolidone, citrate) using OECD test guidelines were evaluated in aquatic species (zebrafish, daphnia, algae) and compared. On a size property, the smaller of silver nanomaterials, the more toxic to tested organisms. Sphered type of silver nanomaterials was less toxic to organisms than wired type, and shorter nanowires were less toxic than longer ones. Meanwhile the toxic effects of materials coated on silver nanomaterials were slightly different in each tested species, but not statistically significant. To the best of our knowledge, it is first investigation to evaluate and compare ecotoxicity of silver nanomaterials having different physicochemical characteristics using same test species and test guidelines. This study can provide valuable information for human and environmental risk assessment of silver nanomaterials and guide material manufacturers to synthesize silver nanomaterials more safely to human and environment.

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF

Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for lightning Strike Protection (낙뢰손상방지를 위한 전도성 나노입자 코팅에 의한 탄소섬유 복합재료의 전기전도도 향상 연구)

  • Ha, Min-Seok;Kwon, Oh-Yang;Choi, Heung-Soap
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The improvement of electrical conductivity of carbon-fiber reinforced plastics (CFRP) has been investigated by silver nano-particles coating for the purpose of lightning strike protection. Silver nano-particles in colloid were sprayed on the surface of carbon fibers, which were then impregnated by epoxy resin to form a CFRP specimen. Electrical resistance was measured by contact resistance meter which utilize the principles of the AC 4-terminal method. Electrical resistance value was then converted to electrical conductivity. The coated silver nano-particles on the carbon fibers were verified by SEM and EDS. The electrical conductivity was increased by three times of the ordinary CFRP.

Electromagnetic Properties of Siver Coated Iron based Alloy Powders Prepared by Chemical Reduction Method

  • Lee, Byoung-Yoon;Lee, Jae-Wook;Yun, Yeo-Chun;Jeong, In-Bum;Moon, Joo-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1213-1214
    • /
    • 2006
  • The synthesis of silver coated iron base alloy (Sendust : Fe-Si-Al) powder having the both effects of shielding and suppressing of electromagnetic wave was studied. Depending on thickness of silver coating layer, the electromagnetic properties of the dispersed particles complexed with organic binder were examined. It is proposed that the silver coated sendust flake powders with controlled electrical properties and thickness can be used as thin microwave absorbers in quasi-microwave frequency band.

  • PDF

Window Integrated Solar Collectors (창호일체형 태양열 집열기)

  • Park, Seong-Bae;Lim, Seong-Whan;Park, Mann-Kwi
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.61-65
    • /
    • 2009
  • Window integrated solar collector is to simply install inside of the existing double glass window frame. Double glass window frame is consist of inner glass of Low-E coating and Silver coating, and outer glass of low iron reinforced glass. In order to secure natural lighting in a room, only 50% of window frame is covered with solar collectors. Solar absorption or transmission rate varies seasonally depending on sun angles. Part of inner glass where right behind of the solar plate is covered with silver coating to increase absorption rate of solar plate. The collector is made of a copper serpentine where aluminum fins are soldering. To improve the effect of insulation of inside of the window frame is recommend vacuum. As a result, we are making the 3th sample and will archieve below $F_RU_L=7.5W/m^2^{\circ}C$ that is the account of heat lossed, and above $F_R({\tau}{\alpha})=0.45$.

  • PDF

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.