• Title/Summary/Keyword: silt content

Search Result 278, Processing Time 0.028 seconds

Selection of the optimum mixture condition for stabilization of Songdo silty clay (송도 지역 해양성 점토 고화처리를 위한 최적배합 조건의 선정)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Lee, Yong-Jun;Jang, Soon-Ho;Choi, Jung-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.412-419
    • /
    • 2009
  • Large quantity of extra soils discharged from excavation site in Songdo area can be treated by hardening agents and utilized in surface stabilized layer overlying thick reclaimed soft soil deposit. Though surface layer stabilization method using cement or lime for very soft soils has been studied in recent years, but studies on moderately soft clayey silt has not been tried. The purpose of this research is to investigate optimum mixing condition for stabilizing Songdo marine soil with low plasiticity. The optimum mixing conditions of hardening agents with Songdo soil such as kind of agents, mixing ratio, initial water content and curing time are investigated by uniaxial compression test and laboratory vane test. The results indicate that strength increases with high mixing ratio and long curing time, while decreases drastically under certain water content before mixing. Finally, optimum mixing condition considering economic efficiency and workability with test results was proposed.

  • PDF

Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions

  • Gianluca Bella;Guido Musso
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.247-258
    • /
    • 2024
  • Tailings are waste materials of mining operations, consisting of a mixture of clay, silt, sand with a high content of unrecoverable metals, process water, and chemical reagents. They are usually discharged as slurry into the storage area retained by dams or earth embankments. Poor knowledge of the hydro-mechanical behaviour of tailings has often resulted in a high rate of failures in which static liquefaction has been widely recognized as one of the major causes of dam collapse. Many studies have dealt with the static liquefaction of coarse soils in saturated conditions. This research provides an extension to the case of silty tailings in unsaturated conditions. The static liquefaction resistance was evaluated in terms of stress-strain behavior by means of monotonic triaxial tests. Its dependency on the preparation method, the volumetric water content, the void ratio, and the degree of saturation was studied and compared with literature data. The static liquefaction response was proved to be dependent mainly on the preparation technique and degree of saturation that, in turn, controls the excess of pore pressure whose leading role is investigated by means of the relationship between the -B Skempton parameter and the degree of saturation. A preliminary interpretation of the static liquefaction response of Stava tailings is also provided within the Critical State framework.

Modeling Growth of Canopy Heights and Stem Diameters in Soybeans at Different Groundwater Level (지하 수위가 다른 조건에서 콩의 초장과 경태 모델링)

  • Choi, Jin-Young;Kim, Dong-Hyun;Kwon, Soon-Hong;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.395-404
    • /
    • 2017
  • Cultivating soybeans in rice paddy field reduces labor costs and increases the yield. Soybeans, however, are highly susceptible to excessive soil water in paddy field. Controlled drainage system can adjust groundwater level (GWL) and control soil moisture content, resulting in improvement soil environments for optimum crop growth. The objective of this study was to fit the soybean growth data (canopy height and stem diameter) using Gompertz model and Logistic model at different GWL and validate those models. The soybean, Daewon cultivar, was grown on the lysimeters controlled GWL (20cm and 40cm). The soil textures were silt loam and sandy loam. The canopy height and stem diameter were measured from the 20th days after seeding until harvest. The Gompertz and Logistic models were fitted with the growth data and each growth rate and maximum growth value was estimated. At the canopy height, the $R_2$ and RMSE were 0.99 and 1.58 in Gompertz model and 0.99 and 1.33 in Logistic model, respectively. The large discrepancy was shown in full maturity stage (R8), where plants have shed substantial amount of leaves. Regardless of soil texture, the maximum growth values at 40cm GWL were greater than the value at 20cm GWL. The growth rates were larger at silt loam. At the stem diameter, the $R_2$ and RMSE were 0.96 and 0.27 in Gompertz model and 0.96 and 0.26 in Logistic model, respectively. Unlike the canopy height, the stem diameter in R8 stage didn't decrease significantly. At both GWLs, the maximum growth values and the growth rates at silt loam were all larger than the values at sandy loam. In conclusion, Gompertz model and Logistic model both well fit the canopy heights and stem diameters of soybeans. These growth models can provide invaluable information for the development of precision water management system.

Physical properties of Southeastern Yellow Sea Mud (SEYSM): Comparison with the East Sea and the South Sea mudbelts of Korea (황해 남동부 니질대의 물리적 성질: 동해 및 남해 니질대와의 비교)

  • Kim, Dae-Choul;Kim, Shin-Jeong;Seo, Young-Kyo;Jung, Ja-Hun;Kim, Yang-Eun;Kim, Gil-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.335-345
    • /
    • 2000
  • Physical and acoustic properties of the Southeastern Yellow Sea Mud (SEYSM) of Korea were studied by using 10 piston cores. The data were also compared with mudbelt sediments in the South Sea and the East Sea (southeastern inner shelf) of Korea. The sediments were mainly composed of homogeneous silt. Sandy mud and mud were minor components. The major source of sediment in the study area is probably the Keum River. Finegrained sediments discharged from the river are transported southward by coastal current, resulting in a gradual southward increase in porosity and a decrease in wet bulk density and sound velocity. The mean grain size especially appears to be the most important variable to determine the physical properties and velocity. The variations of physical properties with burial depth are dependent more strongly on sediment texture (especially, silt content) than compaction and/or consolidation. Correlations between the physical properties and the sediment texture show slight deviations from those of the East Sea and the South Sea of Korea in spite of similar pattern within the limiting values. This is probably due to the differences in silt contents, sedimentary environments, mineral compositions, and gas contents.

  • PDF

Proposal of Models to Estimate the Coefficient of Permeability of Soils on the Natural Terrain considering Geological Conditions (지질조건에 따른 자연사면 토층의 투수계수 산정모델 제안)

  • Jun, Duk-Chan;Song, Young-Suk;Han, Shin-In
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2010
  • The soil tests have been performed on the specimens obtained from about 1,150 sites including landslides and non-landslides areas in natural terrains for last 10 years. Based on the results of those tests, the average soil properties are estimated and the simple equations for estimating permeability are proposed according to geologic conditions. The average permeability in Granite and Mudstone sites is higher than other sites and the content of silt and clay in Mudstone and Gneiss sites is higher than other sites. The correlation analysis and the regression analysis were performed to estimate the coefficient of permeability according to geological conditions. As the result of the correlation analysis, the coefficient of permeability is selected as a dependent variable, and the silt and clay contents, the water contents and the dry unit weights are selected as independent variables. As the result of the regression analysis, the silt and clay contents and the void ratio were involved commonly in the linear regression equations according to geological conditions. To verify the proposed the linear regression equations, the measured result of the coefficient of permeability at other sites was compared with the result predicted with the proposed equations. As the result of comparison, there were a little bit different between them for some data. However the difference was relatively small. Therefore, the linear regression equations for estimating the coefficient of permeability according to geological conditions may be applied to Korean soils. However, these equations should be verified and corrected continuously to improve the accuracy.

Analysis of Geochemical Characteristics in the Intertidal Zone of Hyung-Do, Shi-Hwa Lake (시화호 형도 갯벌의 지화학적 특성 분석)

  • Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han-Jun;Cho, Jin-Hyung;Lee, Seung-Yong;Jang, Seok
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.243-263
    • /
    • 2011
  • In order to understand the sedimentary environment of the southern intertidal zone of Shihwa Lake, west coast of Gyeonggi-do, 10 surface and 2 core sediment samples were analysed for grain size, water content, AVS (Acid Volatile Sulfide), TOC (Total Organic Carbon), concentrations of metals (Al, Fe, Mn, Cu, As, Pb, Zn, Ni, Cd, and Cr). The surface sediments are generally poorly sorted (0.60~2.31 ${\phi}$) sandy Silt, slightly gravelly muddy Sand, silty Sand, Sand with mean grain size of 2.95 to 6.00 ${\phi}$. The sediments contain Al (1.54%), Fe (1.75%), Cu (9.1ppm), As (1.1ppm), Pb (18.8 ppm), Ni (11.0 ppm), Cd (0.02 ppm), and Cr (30.1 ppm) on the average. Heavy metals are concentrated less than ERL (Effect Range-Low), verified by NOAA (National Oceanic and Atmospheric Administration). In the core sediments, they are also less than the ERL. Based on the uniform vertical distribution of excess radioactivity of $^{210}Pb$, the core sediments seen to have been actively mixed biologically or rapidly deposited after the construction of Shi-Hwa Seawall. The 'enrichment factor' of metals, normalized to Al, shows that the upper sediments of 35 cm in depth are more polluted. infect was significant in 2 core sediment samples in 35 cm below layer.

Study on small resistance regions in post-liquefaction shear deformation based on soil's compressive properties

  • Jongkwan Kim;Jin-Tae Han;Mintaek Yoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.295-301
    • /
    • 2024
  • Understanding the post-liquefaction shear behavior is crucial for predicting and assessing the damage, such as lateral flow, caused by liquefaction. Most studies have focused on the behavior until liquefaction occurs. In this study, we performed undrained multi-stage tests on clean sand, sand-silt mixtures, and silty soils to investigate post-liquefaction shear strain based on soil compressibility. The results confirmed that it is necessary to consider the soil compressibility and the shape of soil particles to understand the post-liquefaction shear strain characteristics. Based on this, an index reflecting soil compressibility and particle shape was derived, and the results showed a high correlation with post-liquefaction small resistance characteristic regardless of soil type and fine particle content.

Bacteriophage removal in various clay minerals and clay-amended soils

  • Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Kim, Song-Bae;Yu, Seungho;Kim, Tae-Hun
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • The aim of this study was to investigate the bacteriophage removal in various clay minerals and clay-amended soils. Batch experiments in kaolinite, montmorillonite, and bentonite showed that kaolinite was far more effective at the MS2 removal than montmorillonite and bentonite. In kaolinite, the log removal increased from 0.046 to 2.18, with an increase in the adsorbent dose from 0.3 to $50g\;L^{-1}$, whereas the log removals in montmorillonite and bentonite increased from 0.007 to 0.40 and from 0.012 to 0.59, respectively. The MS2 removal in kaolinite-amended silt loam soils was examined at three different soil-to-solution (STS) ratios. Results indicated that the log removal of MS2 increased with an increase in the kaolinite content and the STS ratio. At the STS ratio of 1:10, the log removal of MS2 increased from 2.33 to 2.80 with an increase in the kaolinite content from 0% to 10% in kaolinite-amended soils. The log removals of MS2 at the STS ratios of 1:2 and 1:1 increased from 2.84 to 3.47 and from 3.46 to 4.76, respectively, with an increase in the kaolinite content from 0% to 10%. Results also indicated that the log removals of PhiX174 and $Q{\beta}$ in kaolinite-amended soils were similar to each other, but they were far lower than those of MS2 at all the kaolinite contents. The log removal of PhiX174 increased from 0.16 to 0.32, whereas the log removal of $Q{\beta}$ changed from 0.17 to 0.22 with an increase in the kaolinite content from 0% to 10%.

Changes in the Physicochemical Properties of Soil According to Soil Remediation Methods (토양 정화 방법에 따른 토양의 물리화학적 특성 변화)

  • Yi, Yong-Min;Oh, Cham-Teut;Kim, Guk-Jin;Lee, Chul-Hyo;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.36-43
    • /
    • 2012
  • Various methods are used to remediate soil contaminated with heavy metals or petroleum. In recent years, harsh physical and chemical remediation methods are being used to increase remediation efficiency, however, such processes could affect soil properties and degrade the ecological functions of the soil. Effects of soil washing, thermal desorption, and land farming, which are the most frequently used remediation methods, on the physicochemical properties of remediated soil were investigated in this study. For soils smaller than 2 mm, the soil texture were changed from sandy clay loam to sandy loam because of the decrease in the clay content after soil washing, and from loamy sand to sandy loam because of the decrease in the sand content and increase in silt content during thermal desorption, however, the soil texture remained unchanged after land farming process. The water-holding capacity, organic matter content, and total nitrogen concentration of the tested soil decreased after soil washing. A change in soil color and an increase in the available phosphate concentration were observed after thermal desorption. Exchangeable cations, total nitrogen, and available phosphate concentration were found to decrease after land farming; these components were probably used by microorganisms during as well as after the land farming process because microbial processes remain active even after land farming. A study of these changes can provide information useful for the reuse of remediated soil. However, it is insufficient to assess only soil physicochemical properties from the viewpoint of the reuse of remediated soil. Potential risks and ecological functions of remediated soil should also be considered to realize sustainable soil use.

Influence of Rice-soybean Rotation on Soil Chemical Properties and Crop Growth in Silt Loam Soil (미사양토에서 벼-콩 윤작재배가 토양화학성과 작물생육에 미치는 영향)

  • Lee, Deog-Bae;Yang, Chang-Hyu;Ryu, Chul-Hyun;Lee, Kyeong-Bo;Kim, Byeong-Su
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.209-213
    • /
    • 2006
  • This study was carried out to investigate the changes in soil chemical properties and yields of crops by rice-soybean rotation cropping system at silt loam soil. There were 4 rotation cropping systems; continuous rice cultivation, annual, biennial and triennial rotation of soybean and rice. There were little change in pH, organic matter, $Ca^{2+}$ and $K^+$ contents with decrease in available phosphate content in the continuous rice cropping. The cropping system of soybean-rice caused to increase in available $P_2O_5$, $K^+$ and $Ca^{2+}$ in the soil after harvest. Content of $NH_4-N$ in the soil also increased after the rotation of soybean than the continuous rice cropping in the soil during the rice growth period. These chemical change in the soil caused to increase rice growth in number of the panicles and the spikelet per square meter. The yield of rice was increased by the rotation with soybean, and was gradually increased in the triennial rotation of soybean and rice. But the yield of soybean was decreased in continuous cultivation for two or three years in the paddy field. It was recommended for annual rotation to prevent the yield of soybean from decrease.