• Title/Summary/Keyword: silicon powder

Search Result 352, Processing Time 0.045 seconds

Al2O3/Al Composites Fabricated by Reaction between Sintered SiO2 and Molten Al (실리카 소결체와 용융 알루미늄과의 반응에 의한 $Al_2$O$_3$/Al 복합체의 제조)

  • 정두화;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.923-932
    • /
    • 1998
  • Al2O3/Al composites were produced by displacement reaction method which was carried out by imm-ersing the sintered silica preform which was prepared form fused silica powder in molten aluminu. an ac-tivation energy of 94kJ/mole was calculated from Al-SiO2 reaction data in 1000-130$0^{\circ}C$ temperature range With increase of reaction temperature the alumina particle in the Al2O3/Al composites produced with pur metal Al showed grain growth and the growth of alumina particle in Al2O3/Al composite produced by using of Mg contained Al alloy was inhibited. The flexural strength of Al2O3/Al composites produced at 100$0^{\circ}C$ showed the highest value as 393 MPa. Flexural strength of the composite fabricated at 85$0^{\circ}C$ showed higher deviation than that of the composite produced at above 100$0^{\circ}C$ Low flexural strength of the composite fa-bricated at 120$0^{\circ}C$ due to the growth of pore and alumina particle size. The hardness of composites de-pended on alumina content in Al2O3/Al composite decreased with increasing of aluminium content in case the same alumina content and increased with increasing of silicon content in composite.

  • PDF

Effects of gas pressure sintering (GPS) conditions on the mechanical properties of silicon nitride (가스압 소결(GPS) 조건이 질화규소의 기계적 특성에 미치는 영향)

  • 이수완;김성호;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.619-625
    • /
    • 1997
  • $Si_3N_4$ powder with 2 wt% $Al_2O_3$ and 6 wt% $Y_2O_3$additives was gas pressure sintered (GPS). Characterization of the mechanical properties was compared with sintering conditions (temperature, pressure, time). Based on experimental result , the optimal condition of gas pressure sintering was found at $1900^{\circ}C$, 3 MPa for 1 hour. It is assumed that mechanical properties were degraded due to the grain coasening effects with increasing temperature or holding time. However, the grain size was decreased with increasing pressure, resulted in better strength, but lower fracture toughness. Present results suggested that optimization of processing parameters was impotant for better mechanical properties of $Si_3N_4$.

  • PDF

Effects of Pressure on Properties of SiC-$ZrB_2$ Composites through SPS (SPS법에 의한 SiC-$ZrB_2$ 복합체의 특성에 미치는 압력의 영향)

  • Shin, Yong-Deok;Lee, Jung-Hoon;Kim, Chul-Ho;Jin, Beom-Soo;Wu, Na
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1449-1450
    • /
    • 2011
  • The SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol.%) mixture of zirconium diboride($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering(SPS) under argon atmosphere at 50MPa(P50) and 60MPa(P60) pressure. The relative density, 94.13% of P60 sample was lower than that, 94.75% of P50 sample. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The trend of flexural strength of SiC-$ZrB_2$ composites were in accordance with the relative density. The properties of a SiC-$ZrB_2$ composites through SPS under argon atmosphere were positive temperature coefficient resistance in the temperature range from $25^{\circ}C$ to $500^{\circ}C$, and electrical resistivity of P50 and P60 sample were $6.75{\times}10^{-4}$ and $7.22{\times}10^{-4}{\Omega}{\cdot}cm$ at room temperature, respectively.

  • PDF

Effect of Al2O3 Addition on SF6 Decomposition by Microwave Irradiation (마이크로파 조사에 의한 SF6 분해시 Al2O3 첨가의 영향)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Silicon carbide with aluminium oxide was used to remove the sulphur hexafluoride ($SF_6$) gas using microwave irradiation. The destruction and removal efficiencies (DREs) of $SF_6$ were studies as a function of various decomposition temperatures and microwave powers. The decomposition of $SF_6$ gas was analyzed using GC-TCD. XRD (X-ray powder diffraction) and XRF (X-ray Fluorescence Spectrometer) were used to characterize the properties of aluminum oxide. DREs of $SF_6$ were increased as the microwave powers were increased. Additive aluminium oxide on SiC increased the removal efficiencies and decreased the decomposition temperature. The XRD results show that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during $SF_6$ decomposition by microwave irradiation. It was found that the best material to control $SF_6$ was SiC with $Al_2O_3$ 30 wt% in consideration of microwave energy consumption and $SF_6$ decomposition rate.

A study on the Polymer surface treatment of GF-filter bag for collection of fine Particle like carbon black (카본블랙류 미세입자 포집을 위한 유리섬유 필터백의 고분자 표면처리에 관한 연구)

  • Lee, B.;Choi, H.L.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.55-59
    • /
    • 2008
  • In this paper, we have investigated on collection efficiency of fine particle of glass fiber-filter bag according to the surface treatment. The solution consisted of polytetrafluoroethylene(teflon), graphite powder, silicon resin and water was used as a basic surface treatment agent. Tensile strength of glass filter-bag increased with up to 3hrs and then decreased with surface treatment time. Tensile strength and initial modulus of the glass fiber-filter bag treated by iodine after basic surface treatment for 3hrs were lower than those of basic surface treatment for 3hrs, however collection efficiency and fracture strain were higher than those of basic surface treatment for 3hrs. Glass fiber-filter bag with lower initial modulus and more strain will be extend the durable period and the one treated by iodine after basic surface treatment 3or 3hrs is expected high collection efficiency of fine particle. This method makes it possible to manufacture glass fiber-filter bag of the optimum condition.

  • PDF

A Study on the Diamond Synthesis by MPECVD using $CO-H_2$ Mixture ($CO-H_2$ 혼합 기체의 MPECVD 에 의한 다이아몬드 합성에 관한 연구)

  • Ku, Ja-Chun;Oh, Jeong-Seob;Hwang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.390-393
    • /
    • 1989
  • Diamond is synthesized from the gaseous mixture of carbon monoxide and hydrogen by microwave PECVD. $10{\times}10mm^2$ silicon wafers are used as the substrate,and it can be raised more than $900^{\circ}C$ by microwave absorption, radiation by plasma and bombardment of ions. The changes of the morphology and the growth rates of the deposits with the experimental conditions are examined by Scanning Electron Microscopy. The d values of all the deposited films concide with those of powder diffraction data in XRD. In Raman spectra, the peak of the deposit coincides with that of the natural diamond which has a value of 1332.5 $cm^{-1}$, and the broad peak from 1360 $cm^{-1}$to 1600 $cm^{-1}$which represents the amorphous graphite was observed in the higher concentration of carbon monoxide.

  • PDF

Prevention of Grain Growth during the Liquid-Phase Assisted Sintering of β-SiC (액상소결 시의 β-SiC의 입자성장 방지)

  • Gil, Gun-Young;Noviyanto, Alfian;Han, Young-Hwan;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.485-490
    • /
    • 2010
  • In our previous studies, continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by two different slurry infiltration methods: vacuum infiltration and electrophoretic deposition (EPD). 12 wt% of $Al_2O_3-Y_2O_3$-MgO with respect to SiC powder was used as additives for liquid-phase assisted sintering. After hot pressing at $1750^{\circ}C$ under 20 MPa for 2 h in Ar atmosphere, a high composite density could be achieved for both cases, whereas the problems such as large grain size and non-uniform distribution of liquid phase were observed, which was resulted in the relatively poor mechanical properties of composites. Therefore, efforts have been made to reduce the grain growth during the sintering, including the optimization for hot pressing condition and utilization of spark plasma sintering using a SiC monolith. Based on the results, spark plasma sintering was found to be effective method in decreasing the amount of sintering additive, time and grain growth, which will be explained in comparison to the results of hot pressing in this paper.

Effect of $Al_2O_3$ and $Fe_2O_3$ Tribological Properties of Reaction Bonded SiC (반응 소결 SiC 소결체의 마찰마모특성에 미치는 첨가제 $Al_2O_3$$Fe_2O_3$ 의 영향)

  • 백용혁;박홍균
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1069-1075
    • /
    • 1994
  • When ceramics are used as the parts of an engine and a machine, the tribological properties are very important. For the preparation of the resistance material for wear applications by the method of Reaction-Bonded Sintering, metal silicon and carbon black are mixed up into SiC powder, and Al2O3 and Fe2O3 are put as an additive. As the general properties, the bending strength and water absortion are measured in the normal temperature and the phase changies are investigated with XRD. The property of the resistance for wear applications is measured with the amount of friction and wear, friction coefficient and maximum asperties. And, the surface of wear is observed with SEM. With the results of this study, the optimal mol ratio of Si : C and the suitable quantity of the mixture of SiC are 7 : 3 and 40 wt%, respectively. In the case of the addition of Al2O3 (2 wt%), the resistance for friction and wear applications is prominent. The bending strength showed the highest peak when Al2O3 (4 wt%) and Fe2O3 (4 wt%) were added. The properties of friction and wear were related with the propagation velocity of crack rather than the bending strength.

  • PDF

Effects of Debinding Atmosphere on Properties of Sintered Reaction-bonded Si3N4 Prepared by Tape Casting Method

  • Park, Ji-Sook;Lee, Sung-Min;Han, Yoon-Soo;Hwang, Hae-Jin;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.622-627
    • /
    • 2016
  • The effects of the debinding atmosphere on the properties of sintered reaction-bonded $Si_3N_4$ (SRBSN) ceramics prepared by tape casting method were investigated. Si green tape was produced from Si slurry of Si powder, using 11.5 wt% polyvinyl butyral as the organic binder and 35 wt% dioctyl phthalate as the plasticizer. The debinding process was conducted in air and $N_2$ atmospheres at $400^{\circ}C$ for 4 h. The nitridation process of the debinded Si specimens was performed at $1450^{\circ}C$, followed by sintering at $1850^{\circ}C$ and 20 MPa. The results revealed that the debinding atmosphere had a significant effect on $Si_3N_4$ densification and thermal conductivity. Owing to the higher sintered density and larger grain size, the thermal conductivity of $Si_3N_4$ specimens debinded in air was higher than that of the samples debinded in $N_2$. Thus, debinding in air could be suitable for the manufacture of high-performance SRBSN substrates by tape casting.

COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

  • Izhutov, Aleksey.L.;Iakovlev, Valeriy.V.;Novoselov, Andrey.E.;Starkov, Vladimir.A.;Sheldyakov, Aleksey.A.;Shishin, Valeriy.Yu.;Kosenkov, Vladimir.M.;Vatulin, Aleksandr.V.;Dobrikova, Irina.V.;Suprun, Vladimir.B.;Kulakov, Gennadiy.V.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.859-870
    • /
    • 2013
  • The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ${\sim}60%^{235}U$; the mini-rods were irradiated to an average burnup of ${\sim}85%^{235}U$. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ~ 40% up to ~ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ~ 40% up to ~ 85%.