Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.6.622

Effects of Debinding Atmosphere on Properties of Sintered Reaction-bonded Si3N4 Prepared by Tape Casting Method  

Park, Ji-Sook (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Han, Yoon-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Hae-Jin (Department of Materials Science and Engineering, Inha University)
Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Abstract
The effects of the debinding atmosphere on the properties of sintered reaction-bonded $Si_3N_4$ (SRBSN) ceramics prepared by tape casting method were investigated. Si green tape was produced from Si slurry of Si powder, using 11.5 wt% polyvinyl butyral as the organic binder and 35 wt% dioctyl phthalate as the plasticizer. The debinding process was conducted in air and $N_2$ atmospheres at $400^{\circ}C$ for 4 h. The nitridation process of the debinded Si specimens was performed at $1450^{\circ}C$, followed by sintering at $1850^{\circ}C$ and 20 MPa. The results revealed that the debinding atmosphere had a significant effect on $Si_3N_4$ densification and thermal conductivity. Owing to the higher sintered density and larger grain size, the thermal conductivity of $Si_3N_4$ specimens debinded in air was higher than that of the samples debinded in $N_2$. Thus, debinding in air could be suitable for the manufacture of high-performance SRBSN substrates by tape casting.
Keywords
Sintered reaction-bonded silicon nitride; Tape casting; Thermal property; Debinding;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 J. S. Lee, J. H. Mun, B. D. Han, D. S. Park, and H. D. Kim, "Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders," J. Korean Ceram. Soc., 39 [1] 45-50 (2002).   DOI
2 A. J. Moulson, "Review Reaction-bonded Silicon Nitride: Its Formation and Properties," J. Mater. Sci., 14 [5] 1017-51 (1979).   DOI
3 J. R. G. Evans and A. J. Moulson, "The Effect of Impurities on the Densification of Reaction-bonded Silicon Nitride (RBSN)," J. Mater. Sci., 18 [12] 3721-28 (1983).   DOI
4 G. Ziegler, J. Heinrich, and G. Wotting, "Review Relationships between Processing, Microstructure and Properties of Dense and Reaction-bonded Silicon Nitride," J. Mater. Sci., 22 [9] 3041-86 (1987).   DOI
5 R. G. Pigeon, A. Varma, and A. E. Miller, "Some Factors Influencing the Formation of Reaction-bonded Silicon Nitride," J. Mater. Sci., 28 [7] 1919-36 (1993).   DOI
6 Y. Zhou, X. Zhu, and K. Hirao, "Sintered Reaction-bonded Silicon Nitride with High Thermal Conductivity and High Strength," Int. J. Appl. Ceram. Technol., 5 [2] 119-26 (2008).   DOI
7 M. N. Rahaman and A. J. Moulson, "The Removal of Surface Silica and its Effect upon Silicon Nitridation Kinetics," J. Mater. Sci. 16 [8] 2319-21 (1981).   DOI
8 B. Lei, O. Babushkin, and R. Warren, "Nitridation Study of Reaction-bonded Silicon Nitride in situ by High Temperature X-Ray Diffraction," J. Eur. Ceram. Soc., 17 [9] 1113-18 (1997).   DOI
9 B. T. Lee, Y. J. Yoon, and K. H. Lee, "Microstructural Characterization of Electroconductive $Si_3N_4$-TiN Composites," Mater. Lett., 47 [1] 71-6 (2001).   DOI
10 J. A. Mangels, "Sintered Reaction Bonded Silicon Nitride," Ceram. Eng. Sci. Proc., 2 [7-8] 589-603 (1982).
11 B. T. Lee, J. H. Yoo, and H. D. Kim, "Fabrication of Silicon Nitride Ceramics Using Semiconductor-Waste-Si Sludge," Korean J. Mater. Res., 9 [12] 1170-75 (1999).
12 Y. J. Park, M. J. Park, J. M. Kim, J. W. Lee, J. W. Ko, and H. D. Kim, "Sintered Reaction-bonded Silicon Nitrides with High Thermal Conductivity : The Effect of the Starting Si Powder and $Si_3N_4$ Diluents," J. Eur. Ceram. Soc., 34 [5] 1105-13 (2014).   DOI
13 W. G. Yoon, J. J. Kim, and S. H. Cho, "Effects of Particle Size Distribution of Alumina on Behaviors of Tape Casting," J. Korean Ceram. Soc., 34 [11] 1173-81 (1997).
14 J. S. Sung, K. D. Koo, and C. K .Yoon, "Effect of Binder Burnout Temperature on Sintering Shrinkage of Multilayer Ceramics," J. Korean Ceram. Soc., 33 [12] 1373-79 (1996).
15 S. C. Singhal, "Thermodynamics and Kinetics of Oxidation of Hot-pressed Silicon Nitride," J. Mater. Sci., 11 [3] 500-9 (1976).   DOI
16 B. R. Golla, J. W. Ko, J. M. Kim, and H. D. Kim, "Effect of Particle Size and Oxygen Content of Si on Processing, Microstructure and Thermal Conductivity of Sintered Reaction Bonded $Si_3N_4$," J. Alloys Compd., 595 60-6 (2014).   DOI
17 W. Y. Park, D. S. Park, H. D. Kim, and B. D. Han, "Sintering and Mechanical Properties of Silicon Nitride Prepared with a Low-cost Silicon Nitride Powder," J. Korean Ceram. Soc., 38 [11] 987-92 (2001).
18 J. S. Park, H. J. Lee, S. S. Ryu, S. M. Lee, H. J. Hwang, and Y. S. Han, "Optimization of Binder Burnout for Reaction Bonded $Si_3N_4$ Substrate Fabrication by Tape Casting Method," J. Korean Ceram. Soc., 52 [6] 435-40 (2015).   DOI
19 K. Negita, "Effective Sintering Aids for $Si_3N_4$ Ceramics," J. Mater. Sci. Lett., 4 [6] 755-58 (1985).   DOI
20 M. Liehr, J. E. Lewis, and G. W. Rubloff, "Kinetics of High-temperature Thermal Decomposition of $SiO_2$ on Si(100)," J. Vac. Sci. Technol. A, 5 [4] 1559-62 (1987).   DOI
21 F. W. Smith and G. Ghidini, "Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of $SiO_2$," J. Electrochem. Soc., 129 [6] 1300-6 (1982).   DOI
22 Y. Zhou, H. Hyuga, D. Kusano, Y. I. Yoshizawa, T. Ohji, and K. Hirao, "Review Article: Development of High-Thermal-Conductivity Silicon Nitride Ceramics," J. Asian. Ceram. Soc., 3 221-29 (2015).   DOI
23 D. Starodub, E. P. Gusev, E. Garfunkel, and T. Gustafsson, "Silicon Oxide Decomposition and Desorption during the Thermal Oxidation of Silicon," Surf. Rev. Lett., 6 [1] 45-52 (1999).   DOI
24 E. A. Gulbransen and S. A. Jansson, "The High-Temperature Oxidation, Reduction, and Volatilization Reactions of Silicon and Silicon Carbide," Oxid. Met., 4 [3] 181-201 (1972).   DOI
25 X. Zhu, Y. Zhou, K. Hirao, T. Ishigaki, and Y. Sakka, "Potential Use of only $Yb_2O_3$ in Producing Dense $Si_3N_4$ Ceramics with High Thermal Conductivity by Gas Pressure Sintering," Sci. Technol. Adv. Mater., 11 [6] 1-11 (2010).
26 M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Thermal Conductivity of ${\beta}- Si_3N_4$: I, Effects of Various Microstructural Factors," J. Am. Ceram. Soc., 82 [11] 3105-12 (1999).   DOI
27 X. Zhu, Y. Zhou, and K. Hirao, "Processing and Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride. I: Effect of Si Powder Characteristics," J. Am. Ceram. Soc., 89 [11] 3331-39 (2006).   DOI
28 K. H. Kwak, C. Kim, I. S. Han, and K. S. Lee, "Thermal Shock and Hot Corrosion Resistance of $Si_3N_4$ Fabricated by Nitrided Pressureless Sintering," J. Korean Ceram. Soc., 46 [5] 478-83 (2009).   DOI
29 J. S. Lee, J. H. Mun, B. D. Han, D. S. Park, and H. D. Kim, "Effect of Raw-Si Particle Size on the Mechanical Properties of Sintered RBSN," J. Korean Ceram. Soc., 38 [8] 740-48 (2001).
30 M. J. Choi, T. W. Roh, C. Park, D. S. Park, and H. D. Kim, "The Study of Reaction Bonded Silicon Nitride Fabricated Under Static Nitrogen Pressure," J. Korean Ceram. Soc., 37 [5] 505-10 (2000).
31 S. K. Lee, J. D. Morreti, M. J. Readey, and B. R. Lawn, "Thermal Shock Resistance of Silicon Nitrides Using an Indentation-Quench Test," J. Am. Ceram. Soc., 85 [1] 279-81 (2002).   DOI
32 K. Hirao, Y. Zhou, H. Hyuga, T. Ohji, and D. Kusano, "High Thermal Conductivity Silicon Nitride Ceramics," J. Korean Ceram. Soc., 49 [4] 380-84 (2012).   DOI
33 B. C. Bae, D. S. Park, W. C. Seo, K. S. Bang, and C. Park, "Microstructural Development of $Si_3N_4$ Ceramics Containing Aligned ${\beta}-Si_3N_4$ Whisker Seeds," J. Ocean Eng. Technol., 23 [5] 32-8 (2009).