• Title/Summary/Keyword: silicon fluids

Search Result 36, Processing Time 0.02 seconds

Magnetic field effects of silicon melt motion in Czochralski crystal puller (초크랄스키 단결정 장치내 실리콘 용융액 운동의 자기장효과)

  • Lee, Jae-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.129-134
    • /
    • 2005
  • A numerical analysis was performed on magnetic field effects of silicon melt motion in Czochralski crystal puller. The turbulent modeling was used to simulate the transport phenomena in 18' single crystal growing process. For small crucible angular velocity, the natural convection is dominant. As the crucible angular velocity is increased, the forced convection is increased and the distribution of temperature profiles is broadened. The cusp magnetic field reduces effectively the natural and forced convection near the crucible and the temperature profiles of the silicon fluids is similar in the case of conduction.

Asymmetric Flows for Porous Silicon Electroosmotic Pumps (다공성 실리콘막을 포함한 전기침투 방식 펌프에서의 비대칭적 인 유동)

  • Kim, Dae-Joong;Santiago, Juan G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.703-704
    • /
    • 2008
  • We fabricated and tested porous silicon-based electroosmotic pumps. Compared to other pumping media, porous silicon is beneficial for obtaining comparable flow rates with much lowered electric potential, while maintaining enough mechanical properties. We fabricated porous silicon with two sided-reactive etching processes. We found higher flow rate per electric potential (consistent with previous studies) and we also found asymmetric flow rates for different pumping directions. We plan to utilize this asymmetry for AC pumping applications.

  • PDF

A Study on Thermal Conductivity Characteristics of Nanofluids (나노유체 열전도도 특성 연구)

  • Hwang, Yu-Jin;Park, Jae-Hong;Kim, Hong-Suk;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.162-167
    • /
    • 2006
  • Nanofluid is a kind of new engineering material consisting of nanoparticles dispersed in base fluid. Nanofluids could have various applications such as magnetic fluids, heat exchanger working fluids, lubricants, drug delivery and so on in present study, various nanoparticles, such as MWCNT (Multi-walled Carbon Nanotube), fullerene, copper oxide, and silicon dioxide are used to produce nanofluids. As base fluids, DI-water, ethylene glycol, oil, and silicon oil are used. To investigate the thermo-physical properties of nanofluids, thermal conductivity and kinematic viscosity are measured. Stability estimation of nanofluid is conducted with UV-vis spectrophoto-meter. In this study, the high pressure homogenizer is the most effective method to produce nanofluid with the prepared nanoparticle and base fluid. Excellently stable nanofluids are produced with the magnetron sputtering system. Thermal conductivity of nanofluid increases with increasing particle volume fraction except water-based fullerene nanofluid which has lower thermal conductivity than base fluid due to its lower thermal conductivity, 0.4 W/mK. The experimental results can't be predicted by Jang and Choi model.

  • PDF

Material Charcterization of MR Fluids at High Frequencies (고주파 영역에서의 MR유체 특성연구)

  • Park, Kyoung-mi;Kim, Jae-hwan;Park, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.327.1-327
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, much efforts have been focused on the material characterization of MR fluids at low frequencies below 100㎐. (omitted)

  • PDF

A Study on Flow Characteristics of Dispersive ER Fluids for Development of 3-port ER Valves (3포트 ER 밸브 개발을 위한 분산계 ER유체의 유동특성에 관한 연구)

  • Jang Mun-Jey;Jang Sung-Cheol;Yum Man-oh;Lee Dong-Guk;Kim Ki-Hong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.125-131
    • /
    • 2005
  • The purpose of the present study is to examine the flow characteristics of ER fluids between 2 port and 3 port rectangular tube brass electrodes. ER fluid is made silicon oil mixed with $2-3wt\%$ starch having hydrous particles. Flow visualization of the ER fluids were obtained by CCD camera measuring those of the clusters using an image processing technique. This research found the flow $rate(Q_L)$ with 0 kV /mm, 0.5kV/mm and 1.0kV/mm for $Q_L\;=\;0,\;0$ and $5.73cm^3/s$. When the strength of the electric field increased, the cluster of ER fluids are clearly strong along the rectangular tube and the flow rate(Q) decreased.

  • PDF

Vibration Response Characteristics of the ERP-Cantilevered Beam Under Electrode Gap Change (전극 간극 변화에 따른 ERF-외팔보의 진동응답 특성)

  • 윤신일;최윤대;한상보
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.457-462
    • /
    • 2002
  • This paper describe the vibration characteristics of cantilevered beam filled with ERF subjected to variousr electrode charge. The Proposed ER fluids used in the present study consists of starch particles and silicon oil. The ER fluids undergo a phase-change when subjected to an external electric filed. This Paper Presents performance analyses of three types of the cantilevered beam with different electrode gaps and applied electric fields.

  • PDF

Material Characterization of MR Fluids at High Frequencies (고주파 영역에서의 MR 유체 특성연구)

  • Park, Kyoung-Mi;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.210-215
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, many efforts have been focused on the material characterization of MR fluids at low frequencies below 100Hz. In this paper, the MR fluid property characterization at high frequency region is performed. An experimental setup based on wave transmission technique is made and the storage modulus as well as the loss modulus of MR fluids are found from the measured data of speed sound and attenuation. Details of the experiment are addressed and the obtained storage and loss moduli are addressed at $50kHz{\sim}100kHz$.

  • PDF

APPLICATION OF CFD SIMULATION IN SIC-CVD PROCESS (SiC-CVD 공정에서 CFD 시뮬레이션의 응용)

  • Kim, J.W.;Han, Y.S.;Choi, K.;Lee, J.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.67-71
    • /
    • 2013
  • Recently, the rapid development of the semiconductor industry induces the prompt technical progress in the area of device integration and the application of large diameter wafers for the price competitiveness. As a result of the usage of large wafers in the semiconductor industry, the silicon carbide components which have layers of silicon carbide on graphite or RBSC substrates is getting widely used due to the advantages of SiC such as high hardness and strength, chemical and ionic resistant to all the environments superior than other ceramic materials. For the uniform and homogeneous deposition of silicon carbide on these huge components, it needs to know about the gas flow in the CVD reactor, not only for the delicate adjustment of the process variables but more essentially for the cost reduction for the shape change of specimens and their holders on the stage of reactor. In this research, the CFD simulation is challenged for the prediction of the inner distribution of the gas velocity. Chemical reaction simulation is used to predict the distribution of concentration of the reacting gas with the rotating velocity of the stage. With the increase of the rotating speed, more uniform distribution of the reacting gas on the surface of the stage was obtained.

An Experimental Study on the Low-Temperature Behavior of Stratified Fluids in the Square Cavity (저온에서 정방형 공간내 성층화된 유체의 열적거동에 관한 실험적 연구)

  • 강한용;이동석;김병철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.381-387
    • /
    • 2000
  • An experimental study on the stratified fluids was carried out to investigate the flow characteristics, heat transfer through the interface of fluids, and the applications of thermal behaviors in the square cavity. The same volume of water and silicon oil was filled in it. The experiments were performed with the variations of initial temperatures and cooling surface temperatures. And the effect of vertical or horizontal cooling surface positions in the square cavity was investigated. When the cooling surface temperatures were $-4^{\circ}C$ , the supercooling phenomena were observed for both cases of cooling surface positions in the full region regardless of the initial temperature of fluid. In the square cavity with horizontal cooling surfaces, the lower the initial temperatures were, the longer the supercooling durations were, and with vertical cooling surface the lower the initial temperatures were, the shorter the supercooling durations were.

  • PDF

Design of Compact Magneto-Rheological Fluid Damper for Artificial Low-Limb Prosthesis (Magneto-Rheological Fluid를 이용한 인공지능 의족의 Compact damper 개발)

  • Sung, So-Young;Kang, S.J.;Moon, I.H.;Moon, M.S.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2962-2964
    • /
    • 2005
  • Magneto-Rheological (MR) fluid is suspension of fine magnetic particles in a liquid carrier such as silicon oil or water. MR fluid exhibits solid-like mechanical behavior into chain or clusters with high yield stress when magnetic field is applied to the particles. The response of MR fluids is very quick and reversible after removal of the field. MR Fluids have high yield stress (up to 5kPs) and operate in low voltage power supply. Recently, MR damper using MR fluids was open used in vibration control system such as structural devices, seat vibration controllers and helicopter rotor systems, but it is too big in size and heavy. Therefore, it is not appreciate to rehabilitation devices such as prosthetic limbs.

  • PDF