• Title/Summary/Keyword: silicon carbide (SiC)

Search Result 563, Processing Time 0.028 seconds

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Thermodynamic Comparison of Silicon Carbide CVD Process between CH3SiCl3-H2 and C3H8-SiCl4-H2 Systems (탄화규소 CVD 공정에서 CH3SiCl3-H2과 C3H8-SiCl4-H2계의 열역학적 비교)

  • Choi, Kyoon;Kim, Jun-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.569-573
    • /
    • 2012
  • In order to understand the difference in SiC deposition between the $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems, we calculate the phase stability among ${\beta}$-SiC, graphite and silicon. We constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure (P), temperature (T) and gas composition (C) as variables. Both P-T-C diagrams showed a very steep phase boundary between the SiC+C and SiC region perpendicular to the H/Si axis, and also showed an SiC+Si region with a H/Si value of up to 6700 in the $C_3H_8-SiCl_4-H_2$, and 5000 in the $CH_3SiCl_3-H_2$ system. This difference in phase boundaries is explained by the ratio of Cl to Si, which is 4 for the $C_3H_8-SiCl_4-H_2$ system and 3 for the $C_3H_8-SiCl_4-H_2$ system. Because the C/Si ratio is fixed at 1 in the $CH_3SiCl_3-H_2$ system while it can be variable in the $C_3H_8-SiCl_4-H_2$ system, the functionally graded material is applicable for better mechanical bonding during SiC coating on graphite substrate in the $C_3H_8-SiCl_4-H_2$ system.

A Study on Mechanical Properties of Oxygenated SiC Material (산화된 탄화규소재료의 기계적 특성에 대한 연구)

  • Sang Pill Lee;Jae Hwan Kwak;Jin-Kyung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.397-402
    • /
    • 2024
  • Silicon carbide materials undergo an oxidation reaction in a high-temperature oxidizing environment and show different characteristics depending on the test temperature and time. In particular, the added oxides form a secondary phase within the sintering process and exhibit different oxidation characteristics depending on the added sintering materials. Therefore, to evaluate the oxidation characteristics, the weight of the test piece and the thickness of the oxidation layer were observed, and the structure and oxidation characteristics of the material were analyzed using SEM. SEM observation showed that an oxide layer was formed on the surface of the liquid sintered silicon carbide material after it was oxidized at 1200 ℃, 1300 ℃, and 1400 ℃ for 10 hours, respectively. Then, a bending test was performed at each temperature on the test piece with the oxidation layer formed to evaluate the change in flexural strength. The strength was 466.6 MPa at 1200 ℃, 363.1 MPa at 1300 ℃, and 350.8 MPa at 1400 ℃. Al2O3-SiO2 oxidized at 1200 ℃ for 10 hours showed an increase in strength of about 21.0 MPa compared to the data before the oxidation test.

Structural, Optical properties of layer thickness dependence for silicon quantum dots in SiC matrix superlattice (실리콘 양자점 초격자 박막의 두께에 따른 구조적, 광학적 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.398-398
    • /
    • 2009
  • 텐덤 구조의 양자점 태양전지에서 양자점의 크기에 따라 에너지 밴드갭이 달라 넓은 대역의 태양광을 이용할 수 있다. 이러한 양자점의 크기는 증착 두께의 제어로 조절이 가능하다. Si과 C target을 이용한 RF Co-sputtering 법으로 각각 증착시간을 다르게 하여, SiC/$Si_{1-x}C_x$(x~0.20)인 실리콘 양자점 초격자 박막을 제조하고, $1000^{\circ}C$에서 20분간 질소 분위기에서 열처리를 하였다. Grazing incident X-ray diffraction(GIXRD)를 통해서 Si(111)과 $\beta$-SiC (111)이 생성되었음을 확인하였고, High resolution transmission electron microscopy(HRTEM) 사진으로 양자점의 크기와 분포 밀도를 확인할 수 있었다. Photoluminescence(PL)에서 1.4, 1.5, 1.7, 1.9eV의 Peak이 확인되었다.

  • PDF

Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block (열분해 온도와 성형압력의 영향에 따른 비정질 탄화규소 블록의 치밀화)

  • Joo, Young Jun;Joo, Sang Hyun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • In this study, an amorphous SiC block was manufactured using polycarbosilane (PCS), an organosilicon polymer. The dense SiC blocks were easily fabricated in various shapes via pyrolysis at 1100℃, 1200℃, 1300℃, 1400℃ after manufacturing a PCS molded body using cured PCS powder. Physical and chemical properties were analyzed using a thermogravimetric analyzer (TGA), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and universal testing machine (UTM). The prepared SiC block was decomposed into SiO and CO gas as the temperature increased, and β-SiC crystal grains were grown in an amorphous structure. In addition, the density and flexural strength were the highest at 1.9038 g/㎤ and 6.189 MPa of SiC prepared at 1100℃. The manufactured amorphous silicon carbide block is expected to be applicable to other fields, such as the previously reported microwave assisted heating element.

A Study on Optimization of the P-region of 4H-SiC MPS Diode (4H-SiC MPS 다이오드의 P 영역 최적화에 관한 연구)

  • Jung, Se-Woong;Kim, Ki-Hwan;Kim, So-Mang;Park, Sung-Joon;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.181-183
    • /
    • 2016
  • In this work, the merged PiN Schottky(MPS) diodes based silicon carbide(SiC) have been optimized and designed for 1200V diodes by 2D-atlas simulation tool. We investigated the optimized characteristics of SiC MPS diodes such as breakdown voltage and specific on-resistance by varying the doping concentrations of P-Grid/epi-layer and space of P-Grid, which are the most important parameters. The breakdown voltage and specific on-resistance, based on Baliga's Figure Of Merit (BFOM), have been compared with and the SiC-based MPS diodes show improved BFOMs with low values of specific on-resistance and high breakdown voltage. It has been demonstrated 1,200 V SiC MPS diodes will find useful applications in high voltage energy-efficient devices.

The Effect of Post-deposition Annealing on the Properties of Ni/AlN/4H-SiC Structures (Ni/AlN/4H-SiC 구조로 제작된 소자의 후열처리 효과)

  • Min, Seong-Ji;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.604-609
    • /
    • 2020
  • We investigated the influence of rapid thermal annealing on aluminum nitride (AlN) thin film Schottky barrier diodes (SBDs) manufactured structures deposited on a 4H-silicon carbide (SiC) wafer using radio frequency sputtering. The Ni/AlN/4H-SiC devices annealed at 400℃ exhibited Schottky barrier diode (SBDs) properties with an on/off current ratio that was approximately 10 times higher than that of the as-deposited device structures and the devices annealed at 600℃ as measured at room temperature. Auger electron spectroscopy (AES) measurements revealed that atomic oxygen concentrations in the annealed AlN devices at 400℃, is ascribed to the improvement in on/off ratio and the reduction of on-resistance. Additionally, we investigated the electrical characteristics of the AlN/SiC SBD structures depending on the frequency variation of sound waves.

AE Application for Fracture Behavior of SiC Reinforced CFRP Composites (SiC 강화 CFRP 복합재의 파괴거동에 관한 음향방출 적용)

  • Ryu, Yeong Rok;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.16-21
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic(CFRP) composite with a higher specific strength and rigidity is more excellent than conventional metallic materials or other organic polymer of FRP. It has been widely used in vehicles, aerospaces and high technology industries which are associated with nuclear power fields. However, CFRP laminated composite has several disadvantages as like a delamination, matrix brittleness and anisotropic fibers that are the weak points of the crack initiation. In this present work, the reinforced silicon carbide(SiC) particles were added to the interlayer of CFRP laminates in order to mitigate the physical vulnerability affecting the cracking and breaking of the matrix in the CFRP laminated composite because of excellent specific strength and thermal shock resistance characteristics of SiC. The 1wt% of SiC particles were spread into the CFRP prepreg by using a spray coating method. After that, CFRP prepregs were laminated for the specimen. Also, the twill woven type CFRP prepreg was used because it has excellent workability. Thus the mechanical and fracture behaviors of the twill woven CFRP laminated composite reinforced with SiC particles were investigated with the acoustic emission(AE) method under a fracture test. The results show that the SiC particles enhance the mechanical and fracture characteristics of the twill CFRP laminate composite.

The Effect of Plasma Power on the Composition and Microhardness of a-SiC:H Films Grown by PECVD

  • Lee, Young-Ku-K;Kim, Yunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.123-123
    • /
    • 1999
  • Amorphous hydrogenated silicon carbide (a-SiC:H) films were deposited at the temperature of 40$0^{\circ}C$ using plasma enhanced chemical vapor deposition. The a-SiC:H films were characterized by x-ray photoelectron spectroscopy (XPS) and nanoindentation method. By increasing the plasma power from 20W to 160W, the oxygen content of the a-SiC:H films were observed to decrease from 12.1% to 4.4%. On the other hand, the plasma power did not affect the ratio of carbon to silicon in our experiment where the 1, 3-disilabutane was used as the precursor. Microhardness of the films was observed to increase as the plasma power increased, while the elastic modulus was observed to gave a maximum value at the plasma power of 80W. Microhardness of the film is thought to be strongly affected by the content of adventitious oxygen in the film and it is concluded that the hardness of the film can be improved by increasing the plasma power.

  • PDF

Mechanical Properties of SiC-$Si_3$$N_4$Composites Containing $\beta$-$Si_3$$N_4$Seeds ($\beta$-$Si_3$$N_4$종자입자 첨가 SiC-$Si_3$$N_4$복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.22-27
    • /
    • 2001
  • $\beta$-Si$_3$N$_4$종자입자 첨가가 소결조제로 Y-Mg-Si-Al-O-N계 oxynitride glass를 사용하여 일축가압 소결을 행한 SiC-Si$_3$N$_4$복합재료의 미세구조와 기계적 특성에 미치는 영향을 고찰하였다. 길게 자란 $\beta$-Si$_3$N$_4$입자들과 등방성의 $\beta$-SiC 입자들이 균일하게 분포된 미세구조를 얻었다. $\beta$-Si$_3$N$_4$종자입자 함량이 증가함에 따라 SiC-Si$_3$N$_4$복합재료의 강도와 파괴인성이 증가하였고, 이는 복합화에 기인하는 결함크기의 감소와 길게 자란 $\beta$-Si$_3$N$_4$입자에 의한 균열가교 및 균열회절 등에 기인하였다. SiC-70 wt% Si$_3$N$_4$복합재료의 대표적인 강도와 파괴인성은 각각 770 MPa과 6.2 MPa.m$^{1}$2/ 이었다.

  • PDF