• Title/Summary/Keyword: silicon (Si)

Search Result 3,683, Processing Time 0.029 seconds

A Study on Chemical Vapor Deposited SiO2 Films on Si Water (Silicon Waferdnl에 화학증착된 Silicon Dioxide 박막에 관한 연구)

  • 김기열;최돈복;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.219-225
    • /
    • 1990
  • Silicon dioxide thin film has been grown by a chemical vapor deposition (CVD) technique using SiH4, and O2 gaseous mixture on a silicon substrate. The experimental results indicated that the deposition rate as a function of the input ratio (O2/SiH4) shows two regions, increasing region and decreasing region. Also the deposition rate increases with increasing the deposition temperature. The microstructure of deposited silicon dioxide films is amorphous. The experimental results of infrared absorption spectrums indicate that Si-H and Si-OH bond increase with decreasing input ratio, but Si-O bond is independent on the input ratio. The interfacial charge of deposited silicon dioxide decreases with increasing input ratio.

  • PDF

A Study on Effect of Heat Treatment on Electrochemical Characteristics of Silicon-coated Graphite (실리콘이 코팅된 흑연의 열처리 효과에 따른 전기화학적 특성에 대한 연구)

  • Lee Myungro;Byun Dongjin;Jeon Bub Ju;Lee Joong Kee
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • Surface modification of the silicon-coated graphite was carried out at $200^{\circ}C\~800^{\circ}C$ under hydrogen atmosphere. The silicon-coated graphites were prepared by fluidized-bed spray coating method. The components of silicon films prepared on the graphite consist of SiO, $SiO_x\;(1. The components of silicon films at $200^{\circ}C$ of heat treatment brought on the higher fraction of SiO and $SiO_x$ than that of $SiO_2$. However, inactive $SiO_2$ fraction increases with increase of the heat treatment temperature. The high content of SiO and $SiO_x$ in the silicon film on graphite leads to the higher discharge capacity in our experimental range.

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

Double Layer Anti-reflection Coating for Crystalline Si Solar Cell (결정질 실리콘 태양전지를 위한 이층 반사방지막 구조)

  • Park, Je Jun;Jeong, Myeong Sang;Kim, Jin Kuk;Lee, Hi-Deok;Kang, Min Gu;Song, Hee-eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2013
  • Crystalline silicon solar cells with $SiN_x/SiN_x$ and $SiN_x/SiO_x$ double layer anti-reflection coatings(ARC) were studied in this paper. Optimizing passivation effect and optical properties of $SiN_x$ and $SiO_x$ layer deposited by PECVD was performed prior to double layer application. When the refractive index (n) of silicon nitride was varied in range of 1.9~2.3, silicon wafer deposited with silicon nitride layer of 80 nm thickness and n= 2.2 showed the effective lifetime of $1,370{\mu}m$. Silicon nitride with n= 1.9 had the smallest extinction coefficient among these conditions. Silicon oxide layer with 110 nm thickness and n= 1.46 showed the extinction coefficient spectrum near to zero in the 300~1,100 nm region, similar to silicon nitride with n= 1.9. Thus silicon nitride with n= 1.9 and silicon oxide with n= 1.46 would be proper as the upper ARC layer with low extinction coefficient, and silicon nitride with n=2.2 as the lower layer with good passivation effect. As a result, the double layer AR coated silicon wafer showed lower surface reflection and so more light absorption, compared with $SiN_x$ single layer. With the completed solar cell with $SiN_x/SiN_x$ of n= 2.2/1.9 and $SiN_x/SiO_x$ of n= 2.2/1.46, the electrical characteristics was improved as ${\Delta}V_{oc}$= 3.7 mV, ${\Delta}_{sc}=0.11mA/cm^2$ and ${\Delta}V_{oc}$=5.2 mV, ${\Delta}J_{sc}=0.23mA/cm^2$, respectively. It led to the efficiency improvement as 0.1% and 0.23%.

Endurance and Compatibility of Silicon Carbide as Fluidized Bed Reactor for Poly-silicon (폴리실리콘용 유동층 반응기에서 탄화규소의 내구성과 적합성 연구)

  • Choi, Kyoon;Seo, Jin Won;Hahn, Yoon Soo;Son, Min Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.354-361
    • /
    • 2014
  • In order to utilize silicon carbide (SiC) as an inner part of fluidized bed reactor (FBR) for manufacturing poly-silicon, we have carried out the thermodynamic calculation on the overall reactions including poly-silicon synthesis and compatibility of SiC with FBR process. The resources of silicon included $SiH_4(MS)$, $SiHCl_3(TCS)$ and $SiCl_4(STC)$ and the thermodynamic yield of the FBR with MS, TCS and STC were compared each other with variable range of temperature, pressure and hydrogen to silicon ratio. The silicon yield of MS, TCS and STC were 100%, 28% and 4%, respectively, throughout the conventional FBR conditions. Silicon carbide having high hardness and strength showed strong resistance to granule collisions during the FBR process using a lab-scale reactor. And it also showed quite good compatibility with the typical FBR processes of MS and TCS resources.

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee Eun-Joo;Lee Soo-Hong
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

PECVD of Blanket $TiSi_2$ on Oxide Patterned Wafers (산화막 패턴 웨이퍼 위에 플라즈마 화학증착법을 이용한 균일 $TiSi_2$ 박막형성에 관한 연구)

  • Lee, Jaegab
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.153-161
    • /
    • 1992
  • A plasma has been used in a high vaccum, cold wall reactor for low temperature deposition of C54 TiSi2 and for in-situ surface cleaning prior to silicide deposition. SiH4 and TiCl4 were used as the silicon and titanium sources, respectively. The deposited films had low resistivities in the range of 15~25 uohm-cm. The investigation of the experimental variables' effects on the growth of silicide and its concomitant silicon consumption revealed that and were the dominant species for silicide formation and the primary factors in silicon consumption were gas composition ratio and temperature. Increasing silane flow rate from 6 to 9 sccm decreased silicon consumption from 1500 A/min to less than 30 A/min. Furthermore, decreasing the temperature from 650 to $590^{\circ}C$ achieved blanket silicide deposition with no silicon consumption. A kinetic model of silicon consumption is proposed to understand the fundamental mechanism responsible for the dependence of silicon consumption on SiH4 flow rate.

  • PDF

SiGe Alloys for Electronic Device Applications (실리콘-게르마늄 합금의 전자 소자 응용)

  • Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The silicon-germanium (SiGe) alloy, which is compatible with silicon semiconductor technology and has a smaller band gap and a lower thermal conductivity than silicon, has been used to fabricate electronic devices such as transistors, photodetectors, solar cells, and thermoelectric devices. This paper reviews the application of SiGe alloys to electronic devices and related technical issues. Since the SiGe alloy comprises germanium whose band gap is smaller than silicon, its band gap is also smaller than that of silicon irrespective of the ratio of silicon to germanium. This narrow band gap of SiGe enables the base thickness of bipolar transistors to decrease without a loss in current gain so that it is possible to improve the speed of bipolar transistors by adopting the SiGe-base. In addition, the conversion efficiency of solar cells is enhanced by the absorption of long-wavelength light in the SiGe absorption layer. Phonon scattering caused by the irregular distribution of alloying elements induces the lower thermal conductivity of SiGe than those of pure silicon and germanium. Because a thin film layer with a low thermal conductivity suppresses thermal conduction through a thermal sink, the SiGe alloy is considered to be a promising material for silicon-based thermoelectric systems.

A Study on the pH-, pNa- and pK-Sensing Properties of K and Al Coimplanted SiO$_2$ Thin Films (K 및 Al 이중이온주입된 SiO$_2$ 박막의 pH, pNa 및 pK 농도 감지특성에 관한 연구)

  • 김병수;신백균;이붕주;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.293-297
    • /
    • 2003
  • Silicon dioxide (SiO$_2$) layers were fabricated on Si$_3$N$_4$/SiO$_2$/Si layer structures by low pressure chemical vapor deposition (LPCVD). Potassium and aluminum were then coimplanted by implanting potassium ions with the energy of 100 [keY] and dose of 5x10$^{16}$ [cm ̄$^2$] and 1x10$^{17}$ [cm ̄$^2$] into an aluminum buffer layer on the SiO$_2$Si$_3$N4/SiO$_2$/Si structure. The pH, pNa, and pK ion sensitivities of the resulting layers were investigated and compared to those of as-deposited silicon dioxide layer. The pK-sensitivity of the silicon dioxide was enhanced by the K and Al coimplantation. On the contrary, the pH and pNa-sensitivities of the coimplanted silicon dioxides were quite lower than that of the as-deposited silicon dioxide.