• Title/Summary/Keyword: silicate solution

Search Result 234, Processing Time 0.03 seconds

Leaching of Ca, Fe and Si in Electric Arc Furnace Steel Slag by Aqueous Acetic acid Solution for Indirect Carbonation (간접탄산염화를 위한 전기로제강슬래그 중 Ca, Fe 및 Si 성분의 초산수용액 침출)

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • It has been reported that aqueous indirect carbonation process of calcium silicate mineral could be one of the most promising methods for $CO_2$ sequestration. The process consists of two main steps, extraction of Ca from calcium silicate and carbonation of the extracted solution by $CO_2$. Many types of acids such as HCl and $HNO_3$ can be used in the extraction step of the process. In the case of using aqueous acetic acid solution as the extraction solvent, acetic acid can be reproduced at the carbonation step of the extracted solution by $CO_2$ and recycled to extraction step for reuse it. Industrial by-products such as iron and steel slags are potential raw materials of the indirect carbonation process due to their high contents of calcium silicate. In this study, in order to examine the extraction efficiency of domestic electric arc furnace steel slag by aqueous acetic acid solution, extraction experiments of the slag were performed by using the aqueous acetic acid solutions of varying extraction conditions ; acetic acid concentrations, extraction temperatures and times.

The Effect of Hydration Retarder on Initial Compressive Strength of Sodium Silicate-Cement Grouted Soil (시멘트 수화지연제가 규산나트륨-시멘트 그라우트 초기강도에 미치는 영향에 관한 연구)

  • Chun, Byung-Sik;Yoo, Young-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.453-460
    • /
    • 2005
  • Sodium silicate - the usual portland cement which accomplishes a cement pouring reconsideration main stream and sodium silicate(No.3) after reacting sodium silicate(No.3) with the reaction sodium silicate where oxidation natrium which is included does not react with the cement receiving stiffening water it will burn together on underwater and to become the durability lacks pouring it is recognized. From the hazard which improves an advantage it used the additive which relates in congealing and stiffening of the portland cement and sodium tripolyphosphate(STPP) addition hour initial material age(72 hours at once) which does to be revealed the at high-in-tensity is discovered while accomplishing. The effect of additives on the reactions of sodium silicate solution and cement suspesion was investigated by various physical and chemical tests, such as Si-NMR, XRD, SEM uniaxial compression test. The additives were STPP(sodium tripolyphosphate), EDTA, SUGAR. The compressive strength of sodium silicate(No.3) - cement grout with additives was about $1.5{\sim}10$ times higher than that without additive in early age(72 hours).

  • PDF

Effect of annealing temperature on surface properties of chemical solution derived silicate fiber (화학적 용액법으로 제조한 실리케이트 섬유의 표면 특성에 미치는 열처리 온도의 영향)

  • 황규석;김상복;이영환;장승욱;오정선;안준형;김병훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.217-221
    • /
    • 2003
  • In this work, chemical-solution derived silicate fibers were prepared by mixing tetraethyl orthosilicate, ethanol, distilled water, and hydrochloric acid in order to investigate surface roughness of fiber. Silicate fibers were drawn by using a viscous solution after evaporation at $80^{\circ}C$. The dried gel fibers were finally annealed at $1000^{\circ}C$, $1100^{\circ}C$, $1200^{\circ}C$ and $^1300{\circ}C$ for 60 min in dried air (flow rate = ∼200 ml/min). The crystallinity of the heat-treated silica fiber was analyzed by the X-ray diffraction $\theta$-2$\theta$ scan. A field emission-scanning electron microscope and an atomic force microscope were used to evaluate surface properties. The silicate fiber annealed at $1300^{\circ}C$ showed high value of root mean square roughness and had a relatively inhomogeneous surface structure.

Intramolecular Excimer Formation Processes of 1,3-Dipyrenylpropane in Silicate Sol-Gel

  • Gwon, Mi Su;Lee, Yun Hui;An, Byeong Tae;Lee, Min Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.158-162
    • /
    • 1996
  • The steady-state emission and fluorescence lifetimes of 1,3-dipyrenylpropane were measured in silicate sol-gel and xerogel matrices. In sol solution, the fluorescence emission spectra of monomer and excimer resemble those in hydrocarbon solvents. In gel and xerogel condition, however, the fluorescence spectra exhibit significant change, largely confirming the intramolecular motions in gel pores are influenced by microviscosity. The rate constants for intramolecular excimer formation were obtained from the measured fluorescence lifetimes and the rate processes for excimer forming in silicate sol-gel are described by a simple kinetic scheme.

Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature (알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성)

  • Kim, Won-Ki;Kim, Hong-Joo;Lee, Seung-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

Development and Application of Activated Silicate for Chemical Grouting (지반주입용 활성 실리케이트 약액 (ASG) 의 개발 및 적용)

  • 천병식;류동성;조산연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.131-136
    • /
    • 1999
  • In this study, novel activated silicate grout solution for injection grouting was prepared by the reaction of ordinary waterglass with alkaline earth metal salts mixture by means of the high-speed stirring method with strong shearing force, and its chemical and physical properties were investigated. The variation of its gelation time plotted with the amount of dilution water showed that this novel silicate had better gelation characteristics in comparison with ordinary waterglass. And some other engineering characteristics of this grout such as durability and mechanical properties were investigated experimentally. The whole experimental results established that this novel silicate grout was a good alternative with an existing ordinary waterglass grouting method.

  • PDF

A Study on the High Temperature Properties of Self-hardening Sand Mold (High Temperature Properties of Self-Hardening Sand Mold using Calcium-Orthosilicate Powder) [I] (자경성 주형의 고온성질에 관한 연구 Calcium-Orthosilicate를 이용한 자경성 주형의 고온성질에 관하여 [I])

  • 강인찬;한윤희;문인탁
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.1
    • /
    • pp.20-24
    • /
    • 1976
  • These are many kinds of self-hardening methods for sand mold using sodium silicate. When sodium silicate solution is mixed with calcium-orthosilicate powder hardening reaction occurs, which is based for self-hardening method at high temperature. The high temperature strength and resicual strength of mold are related to the mole ratio of sodium silicate and the contents of calcium-orthosilicate powder. The results obtained in this study were as follows: 1) The high temperature strength of mold was maximum at about $600^{\circ}C$, and at higher temperature showed lower value on the contrary. 2) The high temperature strength of mold was increased by increasing the amount of sodium silicate having lower mole ratio and high concentration. 3) The residual strength of mold was reduced by increasing the mole ratio of sodium silicate and increasing the concentration of calcium-orthosilicate.

  • PDF

Impact of the Silicate Polymerization on the Formation of Insoluble Aluminium Silicate (수 중 존재하는 실리케이트의 존재형태가 불용성 알루미늄실리케이트 형성에 미치는 영향)

  • Gwon, Eun-Mi;Hong, Seung-Kwan;Kim, Ji-Hyong;Jung, Wook-Jin;Yoo, Myung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.654-661
    • /
    • 2007
  • The goal of this research was to identify the impact of silicate polymerization on the formation of insoluble aluminiumsilicate salts which could be a cause of irreversible fouling in the membrane process by lab-scale test. For this, the amount and characteristics of precipitates that were formed in six samples with different Al and Si concentration were analyzed. And the particles was also observed by SEM-EDS(Scanning Electron Microscope - Electron Dispersion Spectrophotometer) to compare morphology and ratio of Al and Si in each precipitates. Finally the reactive and nonreactive silicate contents in the solution and precipitates were analyzed to calculate silicate form content in each fraction. The amount of precipitates was in proportion to the total concentration of both element in solution. And the amount of insoluble particle that was not dissolved in the acid solution was recorded the highest in the sample 2 of which Si concentration was lower than the saturation concentration, 50 mg/L. The content of reactive silicate in precipitates was also recorded the highest value in sample 2 of which almost silicate form was reactive. When the silicate concentration is same, that value was recorded the highest in the sample with highest Al concentration. The SEM morphology of the precipitates was similar to that of Aluminiumhydroxide and the insoluble precipitates was not dissolved in acidic solution with pH 2.7 was able to observed only in sample 2. The ratio of Al and Si in the precipitates was ranged $0.48\sim3.14$, thai of sample 2 was recorded the highest value, 3.14. It is concluded that the insoluble aluminiumsilicate could be easily formed in the solution of which silicate exist as a reactive form and coexisting Al is sufficient.

A Study on the Optimum Manufacturing Conditions of Synthetic Aluminum Silicate (합성규산알루미늄의 최적 제조조건에 관한 연구)

  • Rhee, Gye-Ju
    • YAKHAK HOEJI
    • /
    • v.33 no.2
    • /
    • pp.111-117
    • /
    • 1989
  • The optimum reaction conditions for the acid consuming capacity of aluminum silicate synthesized from the reaction of sodium silicate solution and potassium aluminum sulfate solution were investigated by Box-Wilson experimental design, and the micromeritic properties were examined by the means of BET $N_2$ adsorption, Hg penetrometer and methylen blue adsorption. The chemical composition of the samples were analyzed by gravitic method. The results were found to be as follows: optimum reaction temperature $54.7^{\circ}C$, both concentrations of reactant soln 15.7%, reactants molar ratio (Al/Si) 0.5 and drying temperature $65.0^{\circ}C$. The acid consuming capacity of the sample prepared by above optimum conditions was 68 ml and the chemical composition was $Al_2O_3{\cdot}3.6SiO_2{\cdot}3H_2O$. The relationship between acid consuming capacity and micromeritic properties could not found in the range of experiments. Therefore, it is assumed that the acid consuming mechanism of aluminum silicate depends on the neutralization of $Al_2O_3$ and buffer action of $SiO_2$ in sample.

  • PDF

Synthesis of High Purity Nano-Silica Using Water Glass (물유리를 이용한 고순도 나노실리카 제조)

  • Choi, Jin Seok;Lee, Hyun-Kwuon;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2014
  • Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.