• Title/Summary/Keyword: silicate solution

Search Result 234, Processing Time 0.025 seconds

Hard Coatings on Polycarbonate Plate by Sol-Gel Reactions of Silicates and Melamine Derivative (폴리카보네이트 판 위에 Silicates와 Melamine 유도체의 졸-겔 반응을 이용한 하드 코팅)

  • Kim, Se-Ra;Kang, Min-Kyung;Shin, Young-Jae;Oh, Mee-Hye;Yoon, Yeo-Seong;Shin, Jae-Sup
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.485-490
    • /
    • 2007
  • Hard coating was made on a polycarbonate plate using a sol-gel process with a melamine derivative and silicates, and examined as potential substitutes for automobile glass. Methylated poly(melamine-co-formaldehyde), tetraethoxysilane, and phenyltriethoxysilane were used to form a coating solution. The coatings on the polycarbonate plate were deposited using a sol-gel process. Poly(methyl methacrylate) was coated on the surface of polycarbonate in order to improve adhesion property. The optimum conditions and formulation to obtain excellent physical properties of the coating were determined. Adding the melamine derivative to the coating solution, the pencil hardness of the coating was improved. The hardness of a 3H class pencil, excellent abrasion resistance, and surface uniformity were found in the coated polycarbonate surface.

Effect of irrigants on the color stability, solubility, and surface characteristics of calcium-silicate based cements

  • Selen Kucukkaya Eren;Sevinc Askerbeyli Ors;Hacer Aksel;Senay Canay ;Duygu Karasan
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.10.1-10.11
    • /
    • 2022
  • Objectives: This study aimed to investigate the color stability, solubility, and surface characteristics of 3 calcium silicate-based cements (CSCs) after immersion in different solutions. Materials and Methods: ProRoot white mineral trioxide aggregate (MTA), Biodentine, and Endosequence Root Repair Material (ERRM) were placed in cylindrical molds and stored at 37℃ for 24 hours. Each specimen was immersed in distilled water, 5% sodium hypochlorite (NaOCl), 2% chlorhexidine, or 0.1% octenidine hydrochloride (OCT) for 24 hours. Color changes were measured with a spectrophotometer. Solubility was determined using an analytical balance with 10-5 g accuracy. The surface characteristics were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. Data were analyzed using 2-way analysis of variance, the Tukey test, and the paired t-test. Results: MTA exhibited significant discoloration in contact with NaOCl (p < 0.05). White precipitation occurred on the surfaces of Biodentine and ERRM after contact with the solutions, and none of the materials presented dark brown discoloration. All materials showed significant solubility after immersion in the solutions (p < 0.05), irrespective of the solution type (p > 0.05). The surface topography and elemental composition of the samples showed different patterns of crystal formation and precipitation depending on the solution type. Conclusions: All materials presented some amount of solubility and showed crystal precipitation after contact with the solutions. Biodentine and ERRM are suitable alternatives to ProRoot MTA as they do not exhibit discoloration. The use of OCT can be considered safe for CSCs.

Performance of eco-friendly mortar mixes against aggressive environments

  • Saha, Suman;Rajasekaran, Chandrasekaran;Gupta, Prateek
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • Past research efforts already established geopolymer as an environment-friendly alternative binder system for ordinary Portland cement (OPC) and recycled aggregate is also one of the promising alternative for natural aggregates. In this study, an effort was made to produce eco-friendly mortar mixes using geopolymer as binder and recycled fine aggregate (RFA) partially and study the resistance ability of these mortar mixes against the aggressive environments. To form the geopolymer binder, 70% fly ash, 30% ground granulated blast furnace slag (GGBS) and alkaline solution comprising of sodium silicate solution and 14M sodium hydroxide solution with a ratio of 1.5 were used. The ratio of alkaline liquid to binder (AL/B) was also considered as 0.4 and 0.6. In order to determine the resistance ability against aggressive environmental conditions, acid attack test, sulphate attack test and rapid chloride permeability test were conducted. Change in mass, change in compressive strength of the specimens after the immersion in acid/sulphate solution for a period of 28, 56, 90 and 120 days has been presented and discussed in this study. Results indicated that the incorporation of RFA leads to the reduction in compressive strength. Even though strength reduction was observed, eco-friendly mortar mixes containing geopolymer as binder and RFA as fine aggregate performed better when it was produced with AL/B ratio of 0.6.

Preparation of a Nanosized Micro Element Fertilizer Formulation by using Gamma-irradiation Technique (감마선 조사기술을 이용한 미량원소 비료 나노제제 제조)

  • Park, Hae-Jun;Kim, Hwa-Jung
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.347-352
    • /
    • 2010
  • In this study, we addressed a novel nanosized curdlan-silica complex, which is curdlan bound to silica, for the development of a sustain-releasing micro element fertilizer formulation. The complex was obtained as follow steps; First, Curdlan polymer, sodium silicate ($Na_2SiO_3$) and isopropyl alcohol were dissolved in DDW. Next the resultant solution was irradiated by $^{60}Co$ gamma-irradiator (150 TBq of capacity; ACEL, Canada). Then $MgSO_4$ was treated with the resultant solution. The obtained colloidal solution was dried by freeze dryer. Finally, we obtained a novel nanosized curdlan-silica formulation containing $MgSO_4$ from the colloidal solution. The morphology of the complex was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The nanosized curdlan-silica complex has a particle size ranging from 20 to 80 nm and high stability. Our results suggested that the nano-complex can be applicable to use in various sustain-releasing formulation for pesticide delivery system (PDS).

The Effect of NaOH, KOH on the Hydrothermal Reaction of $CaO-SiO_2-H_2O$ System ($CaO-SiO_2-H_2O$ 계 수열반응에 미치는 NaOH와 KOH의 영향)

  • 이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.147-151
    • /
    • 1981
  • On the calcium silicate hydrothermal reaction, the effect of NaOH and KOH Studied. Forincreasing the yield of fibers and to promote crystal growth, Rotary autoclae has been used. By addition NaOH solution, approximately 150${\mu}{\textrm}{m}$ of pectolite was grown. By addition KOH solution, approximately 30${\mu}{\textrm}{m}$ of 11$\AA$-Tobermorite was grown under the conditon of 21$0^{\circ}C$ 10 days reaction. These results indicate that 11$\AA$-Tobermorite was stabilized by KOH over a wide Temperature and composition range.

  • PDF

A study on the flaking phenomenon by the reaction between glass and solution (유리와 수용액의 반응에 의한 Flaking 현상 연구)

  • 김명석;장원식;심영재;이기강;김정환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.179-186
    • /
    • 1998
  • We have been investigated the effects of the initial pH of the aquous solution, reaction temperature and time for the flaking of the soda-lime glass container. Flaking of glass occuurred in the cases of the $121^{\circ}C$, above pH 11 of solution with no $Mg^{2+}$ ions in solution. The pH of the solution approached to pH 10 under the conditions of below pH 9 of start solution. The flaking mechanism of the glass seem to be composed of formation of leached layer of $Ca^{2+}$ and $Na^{2+}$ ion and separation of these layers during the cooling by the difference of thermal expansion between leached layer and glass surface. The leaching of alkali ions in glass depends on the pH condition of the start solution and the temperature. In the case of $Mg^{2+}$ ions are added, $Mg^{2+}$ ions accelerate the flaking of the sodalime glasses and forms the magnesium silicate compound which result in the decrease of the pH of the solution.

  • PDF

Treatment of AP Solutions Extracted from Solid Propellant by NF/RO Membrane Process (NF/RO 멤브레인 공정을 적용한 고체추진제에서 추출된 암모늄 퍼클로레이트 (AP) 처리 연구)

  • Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Han, Jonghun;Her, Namguk
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Ammonium perchlorate (AP) is primarily derived from the process of liquid incineration treatment when dismantling a solid rocket propellant. A series of batch dead-end nanofiltration (NF) and reverse osmosis (RO) membrane experiments were conducted to explore the retention mechanisms of AP under various hydrodynamic and solution conditions. Low levels of silicate type of siloxane had been detected through the GC/MS and FTIR analysis of liquid solutions extracted from solid ammonium perchlorate composite propellant (APCP). It is indicated that NF/RO membranes fouling in the presence of APCP was mainly attributed to the AP interactions because the concentration of silicate type of siloxane was negligible compared to that of AP. The osmotic pressure of AP was presumably resulted in the flux declines ranging from 13 to 17% in the case of the application of low-pressure (551 and 896 kPa for NF and RO) compared to those in application of high-pressure. The retention of AP by NF/RO membranes significantly varied from approximately 10 to 70% for NF and 26 to 87% for RO, depending on the operating and solution water chemistry conditions. The results suggested that retention efficiency of AP was fairly increased by reducing concentration polarization (i.e. application of low-pressure and stirring speed of 600 rpm) and increasing the pH of a solution. The result of this study was also consistent with the previous modeling of 'solute mass transfer of NF/RO membranes' and demonstrated that hydrodynamic and solution water chemistry conditions are to be a key factor in the retention of AP by NF/RO membranes.

A Study on Enzymatic Degummings of Raw Silk and Silk Fabric (견의 효소 정련에 관한 연구)

  • Lee, Yong-U;Song, Gi-Won;Jeong, In-Mo
    • Journal of Sericultural and Entomological Science
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 1986
  • The studies were carried out to screen the optimum conditions for enzymatic degumming of raw silk yarn and silk fabric by use of Alkalase, a protease produced by Bacteria, comparing with Papain and Trypsin representing natural proteolytic enzymes. 1. The optimum temperature and acidity of degumming solution were 70$^{\circ}C$, pH 5-6 for Papain degumming, 40$^{\circ}C$, pH 8 for Trypsin and 50-60$^{\circ}C$ pH 8-9 for Alkalase. 2. By increasing the Alkalase concentration in the range of 0.6 to 1.0 gram per liter, the time for enzymatic degumming of silk yarn could be reduced by 40 minutes. 3. In degumming of silk yarn by Alkalase, the pretreatment of 95$^{\circ}C$, 10 minutes at 0.1% sodium bicarbonate solution or posttreatent of 80$^{\circ}C$, 20 minutes at 2% (o.w.f.) sodium silicate solution improved the efficiency of enzymatic degumming, as compared to that of nontreatment. 4. The breaking strength, elongation and Lousiness results of enzymatically degummed silk yarn were apt to be improved more than those of soap-degummed one. 5. When the pretreatment of alkaline solution was done with over 20% of degumming ratio, the enzymatic degumming efficiency of both Havutae and Crepe de chine could be reached to the same level with those of soap-soda degummed. 6. As the pretreated silk fabric with 20% of degumming ratio was under action of three proteases, respectively, the deumming efficiency of Havutae and Crepe de chine were completed by Alkalase more than by Papain or Trpysin. 7. The stiffness of enzymatically degummed Crepe de chine was not only reduced by 17% more than that of soap-soda degummed one but also the Drape coefficient was decreased in enzymatically degummed fabrics, which was closely related with the soft touch of degummed fabrics.

  • PDF

Effect of OH- Concentration on the Mechanical and Microstructural Properties of Microarc Oxidatoin Coating Produced on Al7075 Alloy

  • Ur Rehman, Zeeshan;Lee, Dong-Gun;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.503-508
    • /
    • 2015
  • In this work, ceramic coatings were prepared on Al7075 aluminum alloy using microarc oxidation (MAO) process in a silicate-fluoride based electrolyte solution. The effect of $OH^-$ concentration, by adding NaOH to the solution on the microstructural and mechanical properties of the coating was investigated. Surface morphology and cross sectional view of the coating was analyzed using SEM while XRD was used to examine the phase compositions of the coatings. From XRD ${\alpha}-Al_2O_3$ phase was found to be increased by adding NaOH to the electrolyte. Thereby, the hardness and the wear properties of the MAO coatings were found to be superior to those of the coatings prepared without NaOH addition or with amount maximum than 2 g/l NaOH. Moreover, the morphology of the coatings was transformed form nodule-based cluster to crater based structure with the addition of NaOH to the MAO electrolyte solution.

Development of Sustainable Releasing Micro Formulation System using γ-Irradiation Technique to Control Phytophthora Blight Disease

  • Park, Hae-Jun;Kim, Hwa-Jung;Kim, Dong Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2011
  • We introduced a novel sustainable slow-releasing agrochemical formulation, a biopolymer bound to silica, for controlling plant diseases. The formulation was obtained through the following process. Curdlan, sodium silicate ($Na_2SiO_3$) and isopropyl alcohol were dissolved in DDW (Deionized-distilled water). The resultant solution was then irradiated using a $^{60}Co$ ${\gamma}$-irradiator (150 TBq of capacity; ACEL, Canada) at KAERI. The resultant solution was treated with phosphorous acid ($H_3PO_3$). Finally, we obtained a novel biopolymer-silica microsized formulation containing phosphorous acid ($H_3PO_3$) from the solution. The morphology of the complex was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images revealed that the curdlan-silica formulation has a particle size ranging from 1 to $3{\mu}m$ with high stability. We also detected that $H_3PO_3$ was distributed within the formulation through energy dispersive X-ray spectroscopy (EDX) analysis. $H_3PO_3$ was sustain-released from the formulation in water. Based on our results, it seems effectively that one or two applications of the formulation during a cropping season will assist in controlling various plant diseases.