• Title/Summary/Keyword: silica-gel

Search Result 1,513, Processing Time 0.027 seconds

Surface Modification of Silica Aerogels (실리카 에어로겔의 표면 개질)

  • 현상훈;이찬호;김동준
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1319-1324
    • /
    • 1996
  • Silica aerogels were synthesis by the sol-gel-supercritical drying process using isopropanol as a solvent. Effets of the heat-treatment and the surface modification through propoxylation on the structural reinforcement as well as the surface hydrophobic/hydrophilic characteristics of aerogels were investigated. Silica aerogels synthesized by supercritical drying were hydrophobic but aerogels heat-treated above 20$0^{\circ}C$ were transformed to be hydrophilic. In particular it was found that the skeletal structure of aerogels heat-treated at 50$0^{\circ}C$ was strong enough not to crack after adsorbing a large amount of water vapor. Hydrophilic aerogels modified by propoxylation at 28$0^{\circ}C$ for 20 h were reversed to the hydrophobic form. Transition between hydrophobicity and hydrophilicity was reversible. The hydrophobicvity and the hydrophilicity of silica aerogels were attributed to the Si-Oh bond and the nonpolar C-H bond groups of orgainc species respectively.

  • PDF

Using AP2RC & P1RB micro-silica gels to improve concrete strength and study of resulting contamination

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Najaf, Erfan
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.195-206
    • /
    • 2016
  • Today, application of additives to replace cement in order to improve concrete mixes is widely promoted. Micro-silica is among the best pozzolanic additives which can desirably contribute to the concrete characteristics provided it is used properly. In this paper, the effects of AP2RC and P1RB micro-silica gels on strength characteristics of normal concrete are investigated. Obtained results indicated that the application of these additives not only provided proper workability during construction, but also led to increased tensile, compressive and flexural strength values for the concrete during early ages as well as ultimate ones with the resulting reduction in the porosity lowering permeability of the micro-silica concrete. Furthermore, evaluation of microbial contamination of the mentioned gels showed the resultant contamination level to be within the permitted range.

Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer

  • Park, Sang-Eun;Lee, Jea-Won;Haam, Seung-Joo;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.869-872
    • /
    • 2009
  • Double-doped magnetic particles that incorporated magnetites into both the surface and inside the silica cores were fabricated via the sol-gel reaction of citrate-stabilized magnetites with silicon alkoxide. Double-doped magnetic particles were easily fabricated and exhibited an higher magnetism in comparison to the singledoped magnetic particles that were prepared by the erosion of surface-deposited magneties from double-doped magentic particles. Thin gold layer was formed over magnetic silica nanospheres via nanoseed-mediated growth of gold clusters. The plasmon-derived absorption bands of double-doped magnetic silica-gold nanoshells were more broadened and shifted down by ca. 20 nm as compared to those of single-doped magnetic silicagold nanoshells, which were attributed to not only the surface scattering of incident light due to relatively rough surafce morphology, but also heterogeneous permittivity of dielectric cores due to surface-deposited magnetites.

Cure Kinetics and chemorology of silica filled DGEBA/Polyxoypropylenediamine epoxy system (무기물이 충진된 에폭시수지의 경화반응과 유변학적 거동에 관한 연구)

  • 윤은상;이기윤;김대수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.125-126
    • /
    • 1994
  • The chemorheological changes and kinetics during curing reaction of an silica filled epoxy system (DGEBA with curing agent Polyxoypropylenediamine) were investigated. This study concentrates on the influence of silica on the reaction kinetics and rheological behavior of the eopxy system. The concentration of the filler was varied 0~200phr. Curing behavior of the silica filled epoxy system was measured at various heating rates with DSC. Conversion was also measured by integrating the obtained DSC curve and Kinetic parameters measured by using the nonlinear regression method. DSC experiments showed that the presence of silica was found to accelerate the progress of the curing reaction and of reduce the heat of reaction compared with that of unfilled epoxy systems . Rheological experiments were conducted on a Physica by using a disposable parallel plate fixture. Material properites were measured such as the elastic modulus(G′), the loss modulus(G"), the loss tangent(tan $\delta$), and the viscosity was at the initial stahe, and the more the silica filler was added, and the lower the gel temperature was in the epoxy system. In this study it is concluded that the curing of the silica filled epoxy system was found to be accelerated, as silica was added to the epoxy compound.

  • PDF

Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties (CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Pil;Kang, Young-Taec
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

Fabrication of Silica-Containing Breathable Waterproof Polyurethane Dispersion Film (Silica를 함유하는 Polyurethane dispersion 투습방수 Film의 제조)

  • Shin, Hyun-Ki;Huh, Man-Woo;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Silica-polyurethane hybrid breathable films were prepared and their breathabilities were assessed. Appropriately aggregated silica was prepared through sol-gel reaction of water glass and its particle size ranged 360~500nm. The polyurethane dispersion was prepared by the reaction of isophorone diisocyanate(IPDI) as diisocyanate and polytetramethylene glycol(PTMG) and dimethylol propionic acid(DMPA) as polyol, particle size ranging 30~120nm. The reaction between isocyanate and hydroxyl group to form urethane bonding was checked by the intensity of the stretch peak of isocyanate at $2270cm^{-1}$ in the FT-IR. The silica was incorporated into polyurethane dispersion and casted into film. It was shown that the incorporated silica(1~5wt.%) increased water vapour permeability of the films by 30~100%, and decreased the hydrostatic pressure by 10~40%. From the results, it could be concluded that the appropriate hybridization of silica can increase the breathability of polyurethane dispersion film, while minimizing the loss of hydrostatic pressure.

Material and rheological properties of (glycidoxypropyl) trimethoxysilane modified colloidal silica coatings

  • Kang Hyun Uk;Park Jung Kook;Kim Sung Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • Colloidal coating solution was prepared to enhance the hydrophilic property of the film surface. Water and ethanol were used as the dispersion media and (glycidoxypropyl) trimethoxysilane (GPS) as a binder in the colloidal silica coatings. Ethylene diamine was added to the colloidal silica solution as the curing agent. The colloidal silica solution was regarded as a hard-sphere suspension model with low volume fraction of the silica particles. Rheological properties of the silica suspensions modified with GPS have been investigated as a function of pH and concentration. The acidic solution showed high viscosity change by fast hydrolysis reaction and adsorption of the organic binders on the surface of silica particles. However, the hydrolysis was slow at the basic condition and the binders combined with themselves by condensation. The viscosity change was smallest at pH 7. The viscosity increased with the curing time after adding ethylenediamine, and the increase of viscosity at low pH was higher than that at high pH. The hydrophilic properties of the coating film were investigated by the contact angle of water and film surface. The smallest contact angle was shown under the strong acidic condition of pH 2.

Chromatographic Behavior of Proteins on Stationary Phase with Aminocarboxy Ligand

  • Li, Rong;Ju, Ming-Yang;Chen, Bin;Sun, Qing-Yuan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.590-594
    • /
    • 2011
  • An aminocarboxy aspartic acid-bonded silica (Asp-Silica) stationary phase was synthesized using L-aspartic acid as ligand and silica gel as matrix. The standard protein mixtures were separated with prepared chromatographic column. The effects of solution pH, salt concentration and metal ion on the retention of proteins were examined, and also compared with traditional iminodiacetic acid-bonded silica (IDA-Silica) column. The results show that Asp-Silica column exhibited an excellent separation performance for proteins. The retention of proteins on Asp-Silica stationary phase was consistent with electrostatic characteristic of cation-exchange. The stationary phase displayed typical metal chelate property after fixing copper ion (II) on Asp-Silica. Under competitive eluting condition, protein mixtures were effectively isolated. Asp ligand showed better ion-exchange and metal chelating properties as compared with IDA ligand.

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

Sol-Gel reaction by various Colloidal Silicas and Silanes (여러 종류의 Colloidal Silica와 실란에 의한 졸겔반응)

  • Kang, Dong-Pil;Park, Hoy-Yul;Ahn, Myeong-Sang;Myung, In-Hye;Lee, Tae-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.82-85
    • /
    • 2004
  • Colloidal Silica(CS) HSA/2327과 methyltrimethoxysilane(MTMS), 1034A와 tetramethoxysilane(TMOS)/MTMS 간의 졸겔 반응조건이 코팅도막의 특성에 미치는 영향을 조사하기 위하여 CS종류, CS 대비 TMOS/MTMS의 함량비, 반응시간 등을 달리하여 졸을 합성하고, 합성된 졸을 slide glass에 코팅한 후 $300^{\circ}C$에서 경화시킨 도막의 특성들을 조사하였다. HSA/2327/MTMS에 의한 졸로부터 제조된 코팅도막은 졸 반응시간 의존성이 거의 없으며 반응초기부터 접촉각이 상당히 안정되어 있고 특히 낮은 MTMS 함량을 가진 졸들이 더욱 안정된 표면물성을 보였다. 1034A/TMOS/MTMS에 의해서 제조된 코팅도막은 적절한 소수성의 형성과 표면조도의 향상과 더불어 안정된 접촉각 양상을 나타내었다. 표면거칠기는 HSA/2327 혼합 CS계에 의해서는 반응시간이 길고 MTMS 함량이 높아질 때 비교적 표면조도가 나빠지는데 반응시간과 더불어 약간씩 증가하는 경향을 보였다. 1034A CS계에서는 반응시간과 MTMS 함량의 조건에 영향을 받지 않고 표면조도와 균질성이 우수하였다.

  • PDF