• Title/Summary/Keyword: silica-gel

Search Result 1,517, Processing Time 0.028 seconds

Inhibitory Effect of Acetylshikonin from Roots of Lithospermum erythrorhizon on LDL Oxidation and FPTase Activity (지치뿌리로부터 분리한 Acetylshikonin의 LDL 산화 저해활성과 FPTase 저해활성)

  • Kim, Geum-Soog;Jeong, Tae-Sook;Kwon, Byoung-Mok;Kim, Young-Ok;Cha, Seon-Woo;Song, Kyung-Sik;Bek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.221-225
    • /
    • 2009
  • Lithospermum erythrorhizon has been known well as one of traditional medicine for fever reduction, detoxication, and blood circulation improvement. This study was carried out to isolate biological active compounds from roots of Lithospermum erythrorhizon and to investigate their low density lipoprotein (LDL) antioxidant and anticancer activities. The hexane extract of Lithospermi Radix has been separated on silica gel chromatography and a naphthoquinone pigment compound 1 has been isolated. The structure of the compound 1 has been identified by spectroscopic technique, including MS and NMR, as acetylshikonin (1). Acetylshikonin showed significantly inhibitory activity on $Cu^{2+}$-induced human LDL oxidation with $IC_{50}$ value of $8.8\;{\mu}M$ and obvious anticancer effect by inhibiting farnesyl:protein transferase (FPTase) activity with $IC_{50}$ value of $23\;{\mu}M$, which suggested that acetylshikonin might be useful for the treatment of atherosclerosis and cancer.

Experimental and Theoretical Study on Silica Gel Regeneration (실리카 젤의 재생에 관한 실험적 및 이론적 연구)

  • 고학균;정도섭
    • Journal of Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-14
    • /
    • 1977
  • 현재 선진국에서 널리 이용되고있는 곡물의 화력건조는 곡물의 품질을 손상시킬 뿐만 아니라 손실을 증가시키고 있다. 화력에 의한 건조는 또한 연료의 절약면에서 볼 때 역시 문제점을 내포하고있다.l 이러한 문제점들을 해결하기 위하여 근래에는 실리카 젤과 같은 흡습성의 건조제를 사용한 곡물의 건조 실험이 진행 중에 있으며 좋은 결과를 보여주고 있다. 실리카겔은 그 자체무게의 40% 까지 동적 및 정적하에서 수분을 흡수하는 성질을 가지고 있으며 일단 포화상태가 되면 수천번 재생이 가능하다. 본 연구에서는 이와같은 실리카텍의 재생실험을 일차적으로 실내에서 공기의 온도를 일정하게 한 상태에서 실시하였으며 일반적으로 실리카 젤은 $300^{\circ}F$에서 완전재생이 가능하나 본 실험에서 사용된 재생온도는 평면식 태양열 집열기로부터 얻을 수 있는 $150^{\circ}F$ 내외에서 시도하였다. 본실험과 병행하여 건조중 공기와 실리카 젤의 에너지 및 질량변화에 따른 이론식을 만들어 주어진 여러 가지 조건에 대하여 4개의 미분방정식을 컴퓨터에 의하여 해결하였으며 건조(재생) 시간에 따른 공기의 온도와 흡습 및 실리카 젤의 함수량을 구하였다. 위의 이론적인 분석결과는 후에 태양열집열기를 이용한 재생실험을 분석하는데 적용될 것이다. 본 연구결과를 요약하면 다음과 같다. 1. 본 연구에서 유도한 이론식은 실리카 젤의 재생온도를 만족스럽게 표시하였으며 재생시간에 따른 공기의 온도와 흡습 및 실리카 젤의 함수량변화의 이론치는 실험치와 근사하였다. 2. 이론치와 실험치를 일치시키기위하여 흡착온도에서 산출된 열 및 질량 전달계수를 1/5로 조정 사용하였다. 3. 실리카 젤은 $120^{\circ}F$에서 9 %, $180^{\circ}F$에서 1% 내외로 재생이 가능하였다. 4. 본 연구에서 유도된 이론적 분석방법은 다른 여러 가지 형태의 물질 및 건조 또는 냉각 과정을 분석하는데 사용될 수 있다.

  • PDF

Coloration and Chemical Stability of SiO2 and SnO2 Coated Blue CoAl2O4 Pigment (SiO2, SnO2 코팅된 청색 CoAl2O4 안료의 색상, 물성 평가 연구)

  • Yun, JiYeon;Yu, Ri;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.377-381
    • /
    • 2014
  • This work describes the coloration, chemical stability of $SiO_2$ and $SnO_2$-coated blue $CoAl_2O_4$ pigment. The $CoAl_2O_4$, raw materials, were synthesized by a co-precipitation method and coated with silica ($SiO_2$) and tin oxide ($SnO_2$) using sol-gel method, respectively. To study phase and coloration of $CoAl_2O_4$, we prepared nano sized $CoAl_2O_4$ pigments which were coated $SiO_2$ and $SnO_2$ using tetraethylorthosilicate, $Na_2SiO_3$ and $Na_2SiO_3$ as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue $CoAl_2O_4$ solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of $SiO_2$ and $SnO_2$-coated $CoAl_2O_4$ solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type $CoAl_2O_4$ powders were characterized by transmission electron microscope, X-ray diffraction, CIE $L^*a^*b^*$ color parameter measurements.

Purification and Identification of Antimicrobial Substances in Phenolic Fraction of Fig Leaves (무화과잎 페놀성 분획중의 항미생물 활성물질의 정제 및 동정)

  • Kang, Seong-Kuk;Chung, Dong-Ok;Chung, Hee-Jong
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.293-296
    • /
    • 1995
  • Fig leaves were extracted with methanol and then fractionated with ethyl acetate and various buffers to get active fractions and determined the antimicrobial activities. The acidic and phenolic fractions fractionated from the methanol extract of fig leaves showed the strong antimicrobial activities, but the basic and neutral fractions did not show any activities. The degree of antimicrobial activities of phenolic fraction against tested bacteria was higher than those of acidic fraction, but these against yeasts and mold were almost equivalent to those of acidic fraction. Especially, phenolic fraction was mostly affected on Staphylococcus aureus and Pseudomonas aeruginosa. Four antimicrobial substances purified from the phenolic fraction which showed the strongest antimicrobial activities among the fractions from fig leaves, were identified as psoralen($C_{11}H_{6}O_{3}$, MW. 186), bergapten($C_{12}H_{8}O_{4}$, MW. 216), ${\beta}$-sitosterol($C_{29}H_{50}O$, MW. 414) and umbelliferone ($C_{9}H_{6}O_{3}$, MW. 162).

  • PDF

Production and Characterization of Lipopeptide Biosurfactant from Bacillus subtilis A8-8

  • Lee Sang-Cheol;Yoo Ju-Soon;Kim Sun-Hee;Chung Soo-Yeol;Hwang Cher-Won;Joo Woo-Hong;Choi Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.716-723
    • /
    • 2006
  • A biosurfactant-producing bacterial strain was selected from oil-contaminated soil because of its ability to degrade crude oil and tributyrin $(C_{4:0})$. The strain was identified as Bacillus subtilis A8-8 based on its morphological, biochemical, and physiological characteristics. When B. subtilis A8-8 was grown with crude oil as the sole carbon source, the biosurfactant from the strain emulsified crude oil, vegetable oil, and hydrocarbons. Soybean oil was the optimum substrate for the emulsifying activity and emulsion stability of the biosurfactant, both of which were superior to those of several commercially available surfactants. The biosurfactant was purified by a procedure including HCl precipitation, methanol treatment, and silica-gel chromatography. The partially purified biosurfactant was analyzed by TLC (thin-layer chromatography), SDS-PAGE, and HPLC and it reduced the surface tension of water from 72 mN/m to 26 mN/m at a concentration of 30 mg/l. Therefore, the purified lipopeptide biosurfactant has strong properties as an emulsifying agent and acts as an emulsion-stabilizing agent.

Acaricidal Activity and Function of Mite Indicator Using Plumbagin and Its Derivatives Isolated from Diospyros kaki Thunb. Roots (Ebenaceae)

  • Lee, Chi-Hoon;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.314-321
    • /
    • 2008
  • Acaricidal effects of materials derived from Diospyros kaki roots against Dermatophagoides farinae and D. pteronyssinus were assessed using impregnated fabric disk bioassay and compared with that of the commercial benzyl benzoate. The observed responses varied according to dosage and mite species. The $LD_{50}$ values of the chloroform extract of Diospyros kaki roots were 1.66 and $0.96{\mu}g/cm^2$ against D. farinae and D. pteronyssinus. The chloroform extract of Diospyros kaki roots was approximately 15.2 more toxic than benzyl benzoate against D. farinae, and 7.6 times more toxic against D. pteronyssinus. Purification of the biologically active constituent from D. kaki roots was done by using silica gel chromatography and high-performance liquid chromatography. The structure of the acaricidal component was analyzed by GC-MS, $^1H-NMR,\;^{13}C-NMR,\;^1H-^{13}C$ COSY-NMR, and DEPT-NMR spectra, and identified as plumbagin. The acaricidal activity of plumbagin and its derivatives (naphthazarin, dichlon, 2,3-dibromo-1,4-naphthoquinone, and 2-bromo-1,4-naphthoquinone) was examined. On the basis of $LD_{50}$ values, the most toxic compound against D. farinae was naphthazarin $(0.011{\mu}g/cm^2)$ followed by plumbagin $(0.019{\mu}g/cm^2),$ 2-bromo-1,4-naphthoquinone $(0.079{\mu}g/cm^2)$, dichlon $(0.422{\mu}g/cm^2)$, and benzyl benzoate $(9.14{\mu}g/cm^2)$. Additionally, the skin color of the dust mites was changed from colorless-transparent to dark brown-black by the treatment of plumbagin. Similar results have been exhibited in its derivatives (naphthazarin, dichlon, and 2-bromo-1,4-naphthoquinone). In contrast, little or no discoloration was observed for benzyl benzoate. From this point of view, plumbagin and its derivatives can be very useful for the potential control agents, lead compounds, and indicator of house dust mites.

Studies on the Antioxidative Substances in the Seeds of the Rutaceae Family (운향과(芸香科) 식물(植物) 종실(種實)의 항성화성(抗醒化性))

  • Kim, Seong-Jin;Kim, Ji-Soo;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.7-16
    • /
    • 1994
  • Some seeds of the Rutaceae family, Zanthoxylum piperitum, Z. schinifolium officinalis, Poncirus trifoliata, Citrus unshin, were investigated to clarify their antioxidative components. Finely powdered samples were extracted by hexane, followed by dichioromethane and then 70% methanol in a hot bath. Its unsaponifiables containing X-and Y-tocopherol with trace amount of ${\beta}-and$\;{\delta}-tocopherol$. also showed comparatively weak activity, although the hexane fraction itself had no significant antioxidative effect on lard. Levels of total tocopherols in the samples averages 42. 24-154. 11 mg/lOOg total extractives. The dichloromethane-and 70% methanol extractives showed strong antioxidative activity, from which antioxidative substances were purified with benzene-acetone(6:5, V/V) on a silica gel column, and with a solvent mixture of acetonitrile-methanol-$H_2O$(40:40:20, V/V/V) on a Sep-Pak $C_{18}$ hydrolyzed by 5% KOH-ethanol. The recovered unsaponifiables were, then, separated on a column of high performance liquid chromatography. The unsaponifiables produced by hydrolysis of the isolates from dichloromethane extractives has epi-catechin(40.0-57.1%) and (+)-catechin<$l9.1{\sim}24.4%$ to total phenolic substances, on area base) as major component, accompanied by chlorogenic acid, gallic acid(?), trans-p-coumaric acid and tralls-p-ferulic acid including some unknown components, and those derived from 70% methanol extractives also comprise (+)-catechin($31.3{\sim}39.6%$ to total components, on area base), epi-catechin($2O.2{\sim}36.4%$), trans-p-cournaric acid(8.4-15.3%) and trans-p-ferulic acid($7.7{\sim}14.1%$) as predominant component with some minor coponents, but the fraction supposed to be gallic acid(?) is not present. The antioxidative activities of the phenolic components isolated in this work were in order of epi-catechin>catechin>chlorogenic acid>trans-p-ferluic acid>trans-p-coumaric acid.

Screening System for Chitin Synthase II Inhibitors from Natural Resources and its Inhibitor Prodigiosin

  • Hwang, Eui-Il;Kim, Young-Kook;Lee, Hyang-Bok;Kim, Hong-Gi;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.251-257
    • /
    • 2000
  • Chitin synthases are identified as key enzymes of chitin biosynthesis in most of the fungi. Among them, chitin synthase II has been reported to be and essential enzyme in chitin biosynthesis, and exists as a membrane-bound form. To search and screen new antifungal agents from natural resources to inhibit chitin synthase II, the assay conditions were established using the enzyme isolated from Saccharomyces cerevisiae ECY38-38A(pAS6) that overproduces only chitin synthase II. This enzyme was activated only by partial proteolysis with trypsin. Its actibity reached the maximum at $80{\;}\mu\textrm{g}/ml$ of trypsin and was strongly stimulated by 2.0 mM $Co^{2+}$, 1.0 nM UDP-[$^{14}C$]-GicNAc, and 32 mM free-GlcNAc. Under these assay conditions, the highest chitin synthase II activity was observed by incubation at $30^{\circ}C$ for 90 min. However, and extremely narrow range of organic solvents up to as much as 25% of DMSO and 25% of MeOH was useful for determining optimal assay conditions. After a search or potent inhibitors of chitin synthase II from natural resources, prodigiosin was isolated from Serratia marcescens and purified by solvent extration and silica gel column chromatographies. The structure of prodigiosin was determined by UV, IR, Mass spectral, and NMR spectral analyses. Its molecular weight and formula were found to be 323 and $C_{20}H_{25}N_{3}O$, respectively. Prodigiosin ingibited chitin synthase II by 50% at the concentration of $115{\;}\mu\textrm{g}/ml$.

  • PDF

Coenzyme $Q_{10}$ Production by Sphingomonas sp. ZUTE03 with Novel Precursors Isolated from Tobacco Waste in a Two-Phase Conversion System

  • Qiu, Lequan;Wang, Weijian;Zhong, Weihong;Zhong, Li;Fang, Jianjun;Li, Xuanzhen;Wu, Shijin;Chen, Jianmeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.494-502
    • /
    • 2011
  • Coenzyme $Q_{10}$ ($CoQ_{10}$) is a widely used supplement in heart diseases treatment or antioxidative dietary. The microbial production of $CoQ_{10}$ was enhanced by addition of solanesol and novel precursors recovered from waste tobacco. The novel precursors were separated by silica gel and identified as ${\alpha}$-linolenic acid (LNA) and butylated hydroxytoluene (BHT) based on the effect on $CoQ_{10}$ production and GC-MS. The effects of novel precursors on $CoQ_{10}$ production by Sphingomonas sp. ZUTE03 were further evaluated in a two-phase conversion system. The precursor's combination of solanesol (70 mg/l) with BHT (30 mg/l) showed the best effect on the improvement of $CoQ_{10}$ yield. A maximal $CoQ_{10}$ productivity (9.5 mg $l^{-1}$ $h^{-1}$) was achieved after 8 h conversion, with a molar conversion rate of 92.6% and 92.4% on BHT and solanesol, respectively. The novel precursors, BHT and LNA in crude extracts from waste tobacco leaves, might become potential candidates for application in the industrial production of $CoQ_{10}$ by microbes.

Anti-proliferative and Antioxidant Activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone, a Hydroxyanthraquinoid Extrolite Produced by Amycolatopsis thermoflava strain SFMA-103

  • Kumar, C. Ganesh;Mongolla, Poornima;Chandrasekhar, Cheemalamarri;Poornachandra, Yedla;Siva, Bandi;Babu, K. Suresh;Ramakrishna, Kallaganti Venkata Siva
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.200-208
    • /
    • 2017
  • Actinobacteria are prolific producers of a large number of natural products with diverse biological activities. In the present study, an actinobacterium isolated from sunflower rhizosphere soil sample collected from Medak, Andhra Pradesh, South India was identified as Amycolatopsis thermoflava strain SFMA-103. A pigmented secondary metabolite in culture broth was extracted by using methanol and it was further purified by silica gel column chromatography with methanol-chloroform solvent system. Structural elucidation studies based on UV-visible, 1D and 2D-NMR, FT-IR, and mass spectroscopic analyses confirmed the structure as 1-methoxy-3-methyl-8-hydroxy-anthraquinone. It showed significant in vitro anticancer activity against lung cancer and lymphoblastic leukemia cells with $IC_{50}$ values of 10.3 and $16.98{\mu}M$, respectively. In addition, 1-methoxy-3-methyl-8-hydroxy-anthraquinone showed good free radical scavenging activity by DPPH method with an $EC_{50}$ of $18.2{\mu}g/ml$. It also showed other promising superoxide radical scavenging, nitric oxide radical scavenging and inhibition of lipid peroxidation activities. This is a first report of anti-proliferative and antioxidant activities of 1-methoxy-3-methyl-8-hydroxy-anthraquinone isolated from A. thermoflava strain SFMA-103 which may find potential application in biotechnological and pharmaceutical fields.