• 제목/요약/키워드: signless Laplacian

검색결과 5건 처리시간 0.019초

On the Seidel Laplacian and Seidel Signless Laplacian Polynomials of Graphs

  • Ramane, Harishchandra S.;Ashoka, K.;Patil, Daneshwari;Parvathalu, B.
    • Kyungpook Mathematical Journal
    • /
    • 제61권1호
    • /
    • pp.155-168
    • /
    • 2021
  • We express the Seidel Laplacian polynomial and Seidel signless Laplacian polynomial of a graph in terms of the Seidel polynomials of induced subgraphs. Further, we determine the Seidel Laplacian polynomial and Seidel signless Laplacian polynomial of the join of regular graphs.

ON SIGNLESS LAPLACIAN SPECTRUM OF THE ZERO DIVISOR GRAPHS OF THE RING ℤn

  • Pirzada, S.;Rather, Bilal A.;Shaban, Rezwan Ul;Merajuddin, Merajuddin
    • Korean Journal of Mathematics
    • /
    • 제29권1호
    • /
    • pp.13-24
    • /
    • 2021
  • For a finite commutative ring R with identity 1 ≠ 0, the zero divisor graph ��(R) is a simple connected graph having vertex set as the set of nonzero zero divisors of R, where two vertices x and y are adjacent if and only if xy = 0. We find the signless Laplacian spectrum of the zero divisor graphs ��(ℤn) for various values of n. Also, we find signless Laplacian spectrum of ��(ℤn) for n = pz, z ≥ 2, in terms of signless Laplacian spectrum of its components and zeros of the characteristic polynomial of an auxiliary matrix. Further, we characterise n for which zero divisor graph ��(ℤn) are signless Laplacian integral.

THE SPECTRAL DETERMINATIONS OF THE JOIN OF TWO FRIENDSHIP GRAPHS

  • Abdian, Ali Zeydi;Moez, Amirhossein Morovati
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.67-87
    • /
    • 2019
  • The main aim of this study is to characterize new classes of multicone graphs which are determined by their adjacency spectra, their Laplacian spectra, their complement with respect to signless Laplacian spectra and their complement with respect to their adjacency spectra. A multicone graph is defined to be the join of a clique and a regular graph. If n is a positive integer, a friendship graph $F_n$ consists of n edge-disjoint triangles that all of them meet in one vertex. It is proved that any connected graph cospectral to a multicone graph $F_n{\nabla}F_n=K_2{\nabla}nK_2{\nabla}nK_2$ is determined by its adjacency spectra as well as its Laplacian spectra. In addition, we show that if $n{\neq}2$, the complement of these graphs are determined by their adjacency spectra. At the end of the paper, it is proved that multicone graphs $F_n{\nabla}F_n=K_2{\nabla}nK_2{\nabla}nK_2$ are determined by their signless Laplacian spectra and also we prove that any graph cospectral to one of multicone graphs $F_n{\nabla}F_n$ is perfect.