• 제목/요약/키워드: signature-based detection

검색결과 201건 처리시간 0.03초

다이나믹 API 호출 흐름 그래프를 이용한 오프라인 기반 랜섬웨어 탐지 및 분석 기술 개발 (Offline Based Ransomware Detection and Analysis Method using Dynamic API Calls Flow Graph)

  • 강호석;김성열
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.363-370
    • /
    • 2018
  • 최근 랜섬웨어 탐지는 디지털 콘텐츠 보호를 위한 컴퓨터 보안 분야에서 중요한 주요한 이슈가 되고 있다. 그러나 불행하게도 현재 시그니쳐 기반이나 정적 탐지 모델의 경우 압축 및 암호화 등의 기법을 이용하여 탐지를 피해갈 수 있다. 이를 극복하기 위해 본 논문에서는 RF, SVM, SL, NB 알고리즘 같은 데이터 마이닝 기법을 이용한 다이나믹 랜섬웨어 탐지 시스템을 제안하였다. 이 기법은 실제 소프트웨어를 구동 시켜 동작 행위를 추출해 API 호출 흐름 그래프를 만들고 그 특징을 분석에 이용하였다. 그 후 데이터 정규화, 특징 선택 작업을 진행하였다. 우리는 이러한 분석과정을 더욱더 개선 시켰다. 마지막으로 데이터 마이닝 알고리즘을 적용시켜 랜섬웨어인지를 판별하였다. 제안한 알고리즘의 성능 측정을 위해 더 적합한 추가 샘플 랜섬웨어 데이터를 수집하여 실험하였고 탐지성능이 향상되었음을 보여주었다.

Semi-supervised based Unknown Attack Detection in EDR Environment

  • Hwang, Chanwoong;Kim, Doyeon;Lee, Taejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4909-4926
    • /
    • 2020
  • Cyberattacks penetrate the server and perform various malicious acts such as stealing confidential information, destroying systems, and exposing personal information. To achieve this, attackers perform various malicious actions by infecting endpoints and accessing the internal network. However, the current countermeasures are only anti-viruses that operate in a signature or pattern manner, allowing initial unknown attacks. Endpoint Detection and Response (EDR) technology is focused on providing visibility, and strong countermeasures are lacking. If you fail to respond to the initial attack, it is difficult to respond additionally because malicious behavior like Advanced Persistent Threat (APT) attack does not occur immediately, but occurs over a long period of time. In this paper, we propose a technique that detects an unknown attack using an event log without prior knowledge, although the initial response failed with anti-virus. The proposed technology uses a combination of AutoEncoder and 1D CNN (1-Dimention Convolutional Neural Network) based on semi-supervised learning. The experiment trained a dataset collected over a month in a real-world commercial endpoint environment, and tested the data collected over the next month. As a result of the experiment, 37 unknown attacks were detected in the event log collected for one month in the actual commercial endpoint environment, and 26 of them were verified as malicious through VirusTotal (VT). In the future, it is expected that the proposed model will be applied to EDR technology to form a secure endpoint environment and reduce time and labor costs to effectively detect unknown attacks.

패스트 데이터 기반 실시간 비정상 행위 탐지 시스템 (Real-time Abnormal Behavior Detection System based on Fast Data)

  • 이명철;문대성;김익균
    • 정보보호학회논문지
    • /
    • 제25권5호
    • /
    • pp.1027-1041
    • /
    • 2015
  • 최근, Verizon(2010), 농협(2011), SK컴즈(2011), 그리고 3.20 사이버 테러(2013)와 같이 소중한 정보가 누출되고 자산에 피해가 발생한 후에야 보안 공격을 인지하는 APT (Advanced Persistent Threat) 공격 사례가 증가하고 있다. 이러한 APT 공격을 해결하고자 이상 행위 탐지 기술 관련 연구가 일부 진행되고 있으나, 대부분 알려진 악성 코드의 시그너쳐 기반으로 명백한 이상 행위를 탐지하는데 초점을 맞추고 있어서, 장기간 잠복하며 제로데이 취약점을 이용하고, 새로운 또는 변형된 악성 코드를 일관되게 사용하는 APT 공격에는 취약하여, 미탐율이 굉장히 높은 문제들을 겪고 있다. APT 공격을 탐지하기 위해서는 다양한 소스로부터 장기간에 걸쳐 대규모 데이터를 수집, 처리 및 분석하는 기술과, 데이터를 수집 즉시 실시간 분석하는 기술, 그리고 개별 공격들 간의 상관(correlation) 분석 기술이 동시에 요구되나, 기존 보안 시스템들은 이러한 복잡한 분석 능력이나 컴퓨팅 파워, 신속성 등이 부족하다. 본 논문에서는 기존 시스템들의 실시간 처리 및 분석 한계를 극복하기 위해, 패스트 데이터 기반 실시간 비정상 행위 탐지 시스템을 제안한다.

Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델 (Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing)

  • 민병준;유지훈;신동규;신동일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권2호
    • /
    • pp.65-72
    • /
    • 2021
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 하지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며, 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델인 HFS-DNN을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 기존 분류 모델들과 성능 비교를 수행한다. 본 연구에서 제안된 Hybrid Feature Selection 알고리즘이 학습 모델의 성능을 왜곡 시키지 않는 것을 확인하였으며, 불균형을 해소한 학습 모델들간 실험에서 본 논문에서 제안한 학습 모델이 가장 좋은 성능을 보였다.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

행위 그래프 기반의 변종 악성코드 탐지 (Metamorphic Malware Detection using Subgraph Matching)

  • 권종훈;이제현;정현철;이희조
    • 정보보호학회논문지
    • /
    • 제21권2호
    • /
    • pp.37-47
    • /
    • 2011
  • 네트워크 및 컴퓨터의 발전에 따라 악성코드 역시 폭발적인 증가 추이를 보이고 있으며, 새로운 악성코드의 출현과 더불어 기존의 악성코드를 이용한 변종 역시 큰 몫을 차지하고 있다. 특히 실행압축 기술과 코드 난독화를 이용한 변종들은 제작이 쉬울 뿐만 아니라, 자신의 시그너쳐 혹은 구문적 특징을 변조할 수 있어, 악성코드 제작자들이 널리 사용하는 기술이다. 이러한 변종 및 신종 악성코드를 빠르게 탐지하기 위해, 본 연구에서는 행위 그래프 분석을 통한 악성코드 모듈별 유사도 분석 기법을 제안한다. 우리는 우선 악성코드들에서 일반적으로 사용하는 2,400개 이상의 API 들을 분석하여 총 128개의 행위로 추상화 하였다. 또한 동적 분석을 통해 악성코드들의 API 호출 순서를 추상화된 그래프로 변환하고 부분 그래프들을 추출하여, 악성코드가 가진 모든 행위 부분 집합을 정리하였다. 마지막으로, 이렇게 추출된 부분 집합들 간의 비교 분석을 통하여 해당 악성코드들이 얼마나 유사한지를 분석하였다. 실험에서는 변종 을 포함한 실제 악성코드 273개를 이용하였으며, 총 10,100개의 분석결과를 추출하였다. 실험결과로부터 행위 그래프를 이용하여 변종 악성코드가 모두 탐지 가능함을 보였으며, 서로 다른 악성코드들 간에 공유되는 행위 모델 역시 분석할 수 있었다.

웹 브라우저 기반 악성행위 탐지 시스템(WMDS) 설계 및 구현 (Design and Implementation of Web-browser based Malicious behavior Detection System(WMDS))

  • 이영욱;정동재;전상훈;임채호
    • 정보보호학회논문지
    • /
    • 제22권3호
    • /
    • pp.667-677
    • /
    • 2012
  • 악성코드 유포자들은 웹 어플리케이션 취약점 공격을 이용해 주로 악성코드를 유포한다. 이러한 공격들은 주로 악성링크를 통해 이루어지며, 이를 탐지하고 분석하는 연구가 활발히 이루어지고 있다. 하지만, 현재의 악성링크 탐지 시스템은 대부분 시그니처 기반이어서 난독화 된 악성링크는 탐지가 거의 불가능하고 알려진 취약점은 백신을 통해 공격을 사전에 방지 할 수 있지만 알려지지 않은 취약점 공격은 사전 방지가 불가능한 실정이다. 이러한 한계점을 극복하기 위해 기존의 시그니처 기반 탐지 방법을 지양하고 행위기반 탐지 시스템에 관한 연구가 이루어지고 있다. 하지만 현재 개발된 탐지 시스템은 현실적으로 제약사항이 많아 실제로 활용하기에는 한계가 있다. 본 논문에서는 이와 같은 한계를 극복하고 탐지 효율을 높일 수 있는 새로운 웹 브라우저 기반 악성행위 탐지 시스템인 WMDS (Web-browser based Malicious behavior Detection System)를 소개 하고자 한다.

전류신호 분석을 통한 유도전동기 고장진단시스템 연구 (A study on the fault diagnosis system for Induction motor using current signal analysis)

  • 변윤섭;장동욱;박현준;왕종배;이병송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.19-21
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system(motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

유도전동기 고장진단시스템 연구 (A study on the fault diagnosis system for Induction motor)

  • 변윤섭;박현준;김길동;한영재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2172-2174
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

A Study on Variant Malware Detection Techniques Using Static and Dynamic Features

  • Kang, Jinsu;Won, Yoojae
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.882-895
    • /
    • 2020
  • The amount of malware increases exponentially every day and poses a threat to networks and operating systems. Most new malware is a variant of existing malware. It is difficult to deal with numerous malware variants since they bypass the existing signature-based malware detection method. Thus, research on automated methods of detecting and processing variant malware has been continuously conducted. This report proposes a method of extracting feature data from files and detecting malware using machine learning. Feature data were extracted from 7,000 malware and 3,000 benign files using static and dynamic malware analysis tools. A malware classification model was constructed using multiple DNN, XGBoost, and RandomForest layers and the performance was analyzed. The proposed method achieved up to 96.3% accuracy.