• Title/Summary/Keyword: signal transmission

Search Result 2,667, Processing Time 0.032 seconds

Design and Implementation of the Higher-quality Terrestrial 3DTV Broadcasting Standard Specification Based on Synchronization with Non-Real-Time Contents (고화질 스테레오스코픽 영상 서비스를 위한 비실시간 콘텐츠 연동 지상파 3DTV 방송 표준규격 설계 및 검증)

  • Lee, Jangwon;Kim, Kyuheon;Yim, Hyun-Jeong;Cheong, Won-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1185-1194
    • /
    • 2012
  • This paper proposes a new terrestrial 3DTV broadcasting standard specification based on synchronization with non-real-time contents in order to overcome quality limitations of the current 3DTV services that are arisen from the limited bandwidth of the legacy broadcasting channel. In the services using the proposed specification, one view sequence of a stereoscopic video content is delivered as a non-real-time content in idle time, and the other view sequence is transmitted in real time broadcasting signal, thereafter two sequences are synchronized in a receiver for display. Thus, it is possible to provide higher-quality stereoscopic video content services than the current 3DTV services. In order to realize these services, a new mechanism is required which enables synchronization between the data that are from different transmission media and time. Therefore, this paper suggests a solution by multiplexing the synchronization signals of non-real-time contents into broadcasting signals with real-time streams together. This solution can provide a accurate synchronization mechanism by minimum updates of legacy broadcasting systems while maintaining compatibility with legacy services.

A Kernel-level RTP for Efficient Support of Multimedia Service on Embedded Systems (내장형 시스템의 원활한 멀티미디어 서비스 지원을 위한 커널 수준의 RTP)

  • Sun Dong Guk;Kim Tae Woong;Kim Sung Jo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.460-471
    • /
    • 2004
  • Since the RTP is suitable for real-time data transmission in multimedia services like VoD, AoD, and VoIP, it has been adopted as a real-time transport protocol by RTSP, H.323, and SIP. Even though the RTP protocol stack for embedded systems has been in great need for efficient support of multimedia services, such a stack has not been developed yet. In this paper, we explain embeddedRTP which supports the RTP protocol stack at the kernel level so that it is suitable for embedded systems. Since embeddedRTP is designed to reside in the UBP module, existing applications which rely ell TCP/IP services can proceed the same as before, while applications which rely on the RTP protocol stack can request HTP services through embeddedRTp API. EmbeddedRTP stores transmitted RTP packets into per session packet buffer, using the packet's port number and multimedia session information. Communications between applications and embeddedRTP is performed through system calls and signal mechanisms. Additionally, embeddedRTP API makes it possible to develop applications more conveniently. Our performance test shows that packet-processing speed of embeddedRTP is about 7.5 times faster than that oi VCL RTP for multimedia streaming services on PDA in spite that its object code size is reduced about by 58% with respect to UCL RTP's.

A H.264 based Selective Fine Granular Scalable Coding Scheme (H.264 기반 선택적인 미세입자 스케일러블 코딩 방법)

  • 박광훈;유원혁;김규헌
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.309-318
    • /
    • 2004
  • This paper proposes the H.264-based selective fine granular scalable (FGS) coding scheme that selectively uses the temporal prediction data in the enhancement layer. The base layer of the proposed scheme is basically coded by the H.264 (MPEG-4 Part 10 AVC) visual coding scheme that is the state-of-art in codig efficiency. The enhancement layer is basically coded by the same bitplane-based algorithm of the MPEG-4 (Part 2) fine granular scalable coding scheme. In this paper, we introduce a new algorithm that uses the temproal prediction mechanism inside the enhancement layer and the effective selection mechanism to decide whether the temporally-predicted data would be sent to the decoder or not. Whenever applying the temporal prediction inside the enhancement layer, the temporal redundancies may be effectively reduced, however the drift problem would be severly occurred especially at the low bitrate transmission, due to the mismatch bewteen the encoder's and decoder's reference frame images. Proposed algorithm selectively uses the temporal-prediction data inside the enhancement layer only in case those data could siginificantly reduce the temporal redundancies, to minimize the drift error and thus to improve the overall coding efficiency. Simulation results, based on several test image sequences, show that the proposed scheme has 1∼3 dB higher coding efficiency than the H.264-based FGS coding scheme, even 3∼5 dB higher coding efficiency than the MPEG-4 FGS international standard.

A Indoor Management System using Raspberry Pi (라즈베리 파이를 이용한 실내관리 시스템)

  • Jeong, Soo;Lee, Jong Jin;Jung, Won Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • In the era of the Internet of Things, where all physical objects are connected to the Internet, we suggest a remote control system using a Raspberry Pi single-board computer with ZigBee, which can turn an indoor light-emitting diode (LED) and a multiple-tap on and off, and with a smart phone can control the brightness of the LED as well as an electronic door lock. By connecting an infrared (IR) transmitter module to the Raspberry Pi, we can control home appliances, such as an air conditioner, and we can also monitor indoor images, indoor temperatures, and illumination by using a smart phone app. We developed a method of finding out IR transmission codes required for remote-controllable appliances with an AVR micro-controller. We suggest a method to remotely open and shut an office door by novating the door lock. The brightness level of an LED (between 0 and 10) can be controlled through a PWM signal generated by an ATmega88 microcontroller. A mutiple-tap is controlled using an ATmega32, a photo-coupler, and a TRIAC. The signals for measured temperature and illumination are converted from analog to digital by using the ATtiny44A microcontroller transmitting to a Raspberry Pi through SPI communication. Then, we connect a camera to the CSI head of the Raspberry Pi. We can turn on the smart multiple-tap for a certain period of time, or we can schedule the multi-tap to turn on at a specific time. To reduce standby power, people usually pull out a power code from multiple-taps or turn off a switch. Our method helps people do the same thing with a smart phone, if they are away from home.

Cancellation of Phase Noise in 1.4 GHz RF Signal Transferred to a Remote Site through 13 km Fiber (13 km 광섬유를 통하여 원격지로 전송된 1.4 GHz RF 신호의 위상잡음 제거)

  • Lee, Won-Kyu;Park, Chang-Yong;Mun, Jong-Chul;Yu, Dai-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.103-110
    • /
    • 2010
  • A fiber-phase-noise compensating system was constructed for a 1.4 GHz reference frequency transferred through a 13-km-long fiber spool. The transfer instability was dependent on the temperature variation of the compensating system. With the room temperature variation stabilized within $0.3^{\circ}C$, the transfer instability was $4.6{\times}10^{-14}$ at 0.8 s of average time and $2.5{\times}10^{-16}$ at 1000 s of average time with the fiber phase noise compensated. However, with the room temperature changed by $3.5^{\circ}C$, the transfer instability was $6.8{\times}10^{-14}$ at 1.2 s of average time and $3.0{\times}10^{-15}$ at 1000 s of average time. From this result, the temperature stability condition for the experimental setup could be determined to obtain a transfer instability of $10^{-16}$ at 1000 s of average time.

Design and fabrication of Ka-band high-power, high-efficiency spatial combiner using TM01 mode Transducer (TM01 모드 변환을 이용한 Ka 대역 고출력 고효율 공간 결합기 설계 및 제작)

  • Kim, Hyo-Chul;Cho, Heung-Rae;Lee, Ju-Heun;Lee, Deok-Jae;An, Se-Hwan;Lee, Man-Hee;Joo, Ji-Han;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In this study, it proposes a mode converter that is relatively easy to implement and can shorten the transmission line length of the final combining port and it was fabricated and tested by applying it to an 8-way spatial combiner. The proposed mode converter converts the signal converted from the doorknob-shaped circular disk connected to the ground into the TM01 mode by opening it in the circular waveguide. The 8-way waveguide spatial combiner is designed and implemented so that 8 signals input from the H-plane are combined in a circular waveguide at the center, and the final combining mode is TM01. The test results confirmed excellent performance with an insertion loss of less than 0.4dB and a combining efficiency of 95% or more. In addition, it was confirmed that it is suitable for high output by calculating the breakdown voltage and discharge threshold power of the new mode conversion structure through electric field analysis. The results confirmed through this study are expected to be applicable to high-power, high-efficiency SSPA in various fields in the future.

A Study for Detecting Fuel-cut Driving of Vehicle Using GPS (GPS를 이용한 차량 연료차단 관성주행의 감지에 관한 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.207-213
    • /
    • 2019
  • The fuel-cut coast-down driving mode is activated when the acceleration pedal is released with transmission gear engaged, and it's a default function for electronic-controlled engine of vehicles. The fuel economy becomes better because fuel injection stops during fuel-cut driving mode. A fuel-cut detection method is suggested in the study and it's based on the speed, acceleration and road gradient data from GPS sensor. It detects fuel-cut driving mode by comparing calculated acceleration and realtime acceleration value. The one is estimated with driving resistance in the condition of fuel-cut driving and the other is from GPS sensor. The detection accuracy is about 80% when the method is verified with road driving data. The result is estimated with 9,600 data set of vehicle speed, acceleration, fuel consumption and road gradient from test driving on the road of 12km during 16 minutes, and the road slope is rather high. It's easy to detect fuel-cut without injector signal obtained by connecting wire. The detection error is from the fact that the variation range of speed, acceleration and road gradient data, used for road resistance force, is larger than the value of fuel consumption data.

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.

A method of wall absorption treatment for enhancing the speech intelligibility at a directional microphone array in a room (실내 공간 내 지향성 마이크 어레이에서의 음성 명료도 개선을 위한 벽면 흡음 처리 방법)

  • Ko, Byeong-Yun;Ih, Jeong-Guon;Cho, Wan-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.649-659
    • /
    • 2021
  • Wall absorption treatment effectively reduces reverberation, but requires a large area for a live room and each wall absorption affects speech intelligibility differently. In this study, we try to find the most effective wall for the absorption treatment using the beamforming array microphone in terms of speech intelligibility. The absorption importance factor is defined by using the collision number of reflected sounds on each wall. It allows estimating how much the speech signal will be enhanced by the absorption treatment. A cuboid room with a size of 107 m3 and a reverberation time of 1.1 s is selected for the simulation. When a Helmholtz-type absorption is treated on the wall with the most significant importance factor, the modified clarity for 500 and 1k Hz is improved by 5.1 dB and 4.8 dB respectively, and the speech transmission index is enhanced by 0.06. The difference in results between the proposed method and commercial simulation code is less than a Just-Noticeable Difference (JND). The absorption treatment on the wall with the most significant importance factor shows improvement greater than the wall with the largest area, and its difference is larger than a JND value.