• Title/Summary/Keyword: signal sequence

Search Result 1,261, Processing Time 0.03 seconds

Performence Characteristics and Analysis Effect of Maximum Power Saving Device in Metal Parts Heat Treatment Company (금속 부품 열처리업체의 최대전력절감장치 동작 특성 및 효과 분석)

  • Chang, Hong-Soon;Han, Young-Sub;Hwang, Ik-Hwan;Seo, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.40-44
    • /
    • 2014
  • In this paper, maximum power is the lowering device using the facility's energy use and peak load electricity through analyzing attitude should like to make it reduce its power base rate. Simulator to manage the demand for power, a maximum electric power base power from electronic watt-hour meters by a device's signal, predictive power, the current power by computing the goal of power for less than Maximum peak power and peak shift, so that you can manage, and peak York, which role you want a cut Metal heat treatment result which analyzes the data, demand for electricity company over the years of analyzing the characteristics of each load, and effects and Reducing power consumption device every month identified seven Sequence control to the load system and successful power control is about showing that the defined goals.

Eating Activity Detection and Meal Time Estimation Using Structure Features From 6-axis Inertial Sensor (6축 관성 센서에서 구조적 특징을 이용한 식사 행동 검출 및 식사 시간 추론)

  • Kim, Jun Ho;Choi, Sun-Tak;Ha, Jeong Ho;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.8
    • /
    • pp.211-218
    • /
    • 2018
  • In this study, we propose an algorithm to detect eating activity and estimation mealtime using 6-axis inertial sensor. The eating activity is classified into three types: food picking, food eating, and lowering. The feature points of the gyro signal are selected for each gesture, and the eating activity is detected when each feature point appears in the sequence. Morphology technique is used to post-process to detect meal time. The proposed algorithm achieves the accuracy of 94.3% and accuracy of 84.1%.

Design of MTLMS based Decision Feedback Equalizer (MTLMS 기반의 결정귀환 등화기의 설계)

  • Choi Yun-Seok;Park Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.950-953
    • /
    • 2006
  • A key issue toward mobile multimedia communications is to create technologies for broadband signal transmission that can support high quality services. Such a broadband mobile communications system should be able to overcome severe distortion caused by time-varying multi-path fading channel, while providing high spectral efficiency and low power consumption. For these reasons, an adaptive suboptimum decision feedback equalizer (DFE) for the single-carrier short-burst transmissions system is considered as one of the feasible solutions. For the performance improvement of the system with the short-burst format including the short training sequence, in this paper, the multiple-training least mean square (MTLMS) based DFE scheme with soft decision feedback is proposed and its performance is investigated in mobile wireless channels throughout computer simulation.

  • PDF

Novel biological strategies to enhance the radiation therapeutic ratio

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.172-181
    • /
    • 2018
  • Successful anticancer strategies require a differential response between tumor and normal tissue (i.e., a therapeutic ratio). In fact, improving the effectiveness of a cancer therapeutic is of no clinical value in the absence of a significant increase in the differential response between tumor and normal tissue. Although radiation dose escalation with the use of intensity modulated radiation therapy has permitted the maximum tolerable dose for most locally advanced cancers, improvements in tumor control without damaging normal adjacent tissues are needed. As a means of increasing the therapeutic ratio, several new approaches are under development. Drugs targeting signal transduction pathways in cancer progression and more recently, immunotherapeutics targeting specific immune cell subsets have entered the clinic with promising early results. Radiobiological research is underway to address pressing questions as to the dose per fraction, irradiated tumor volume and time sequence of the drug administration. To exploit these exciting novel strategies, a better understanding is needed of the cellular and molecular pathways responsible for both cancer and normal tissue and organ response, including the role of radiation-induced accelerated senescence. This review will highlight the current understanding of promising biologically targeted therapies to enhance the radiation therapeutic ratio.

Molecular Genetics of the Model Legume Medicago truncatula

  • Nam, Young-Woo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2001
  • Medicago truncatula is a diploid legume plant related to the forage crop alfalfa. Recently, it has been chosen as a model species for genomic studies due to its small genome, self-fertility, short generation time, and high transformation efficiency. M. truncatula engages in symbiosis with nitrogen-fixing soil bacterium Rhizobium meliloti. M. truncatula mutants that are defective in nodulation and developmental processes have been generated. Some of these mutants exhibited altered phenotypes in symbiotic responses such as root hair deformation, expression of nodulin genes, and calcium spiking. Thus, the genes controlling these traits are likely to encode functions that are required for Nod-factor signal transduction pathways. To facilitate genome analysis and map-based cloning of symbiotic genes, a bacterial artificial chromosome library was constructed. An efficient polymerase chain reaction-based screening of the library was devised to fasten physical mapping of specific genomic regions. As a genomics approach, comparative mapping revealed high levels of macro- and microsynteny between M. truncatula and other legume genomes. Expressed sequence tags and microarray profiles reflecting the genetic and biochemical events associated with the development and environmental interactions of M. truncatula are assembled in the databases. Together, these genomics programs will help enrich our understanding of the legume biology.

  • PDF

A Hybrid Digital Watermarking Technique for Copyright Protection and Tamper Detection on Still images (정지영상에서 저작권 보호 및 위변조 검출을 위한 하이브리드 디지털 워터마킹 기법)

  • Yoo Kil-Sang;Song Geun-Sil;Choi Hyuk;Lee Won-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.27-34
    • /
    • 2003
  • Digital image manipulation software is now readily available on personal computers. It is therefore very simple to tamper with any image and make it available to others. Therefore. copyright protection of digital contents and insurance of digital image integrity become major issues. In this paper, we propose a hybrid watermarking method to identify locations of tampered region as well as copyright. Our proposed algorithms embed the PN-sequence into low frequency sub-band of the wavelet transform domain and it doesn't need the original image in extraction procedure. The experimental results show good robustness against any signal processing with tamper detection on still image.

  • PDF

Application of Engineered Zinc Finger Proteins Immobilized on Paramagnetic Beads for Multiplexed Detection of Pathogenic DNA

  • Shim, Jiyoung;Williams, Langley;Kim, Dohyun;Ko, Kisung;Kim, Moon-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1323-1329
    • /
    • 2021
  • Micro-scale magnetic beads are widely used for isolation of proteins, DNA, and cells, leading to the development of in vitro diagnostics. Efficient isolation of target biomolecules is one of the keys to developing a simple and rapid point-of-care diagnostic. A zinc finger protein (ZFP) is a double-stranded (ds) DNA-binding domain, providing a useful scaffold for direct reading of the sequence information. Here, we utilized two engineered ZFPs (Stx2-268 and SEB-435) to detect the Shiga toxin (stx2) gene and the staphylococcal enterotoxin B (seb) gene present in foodborne pathogens, Escherichia coli O157 and Staphylococcus aureus, respectively. Engineered ZFPs are immobilized on a paramagnetic bead as a detection platform to efficiently isolate the target dsDNA-ZFP bound complex. The small paramagnetic beads provide a high surface area to volume ratio, allowing more ZFPs to be immobilized on the beads, which leads to increased target DNA detection. The fluorescence signal was measured upon ZFP binding to fluorophore-labeled target dsDNA. In this study, our system provided a detection limit of ≤ 60 fmol and demonstrated high specificity with multiplexing capability, suggesting a potential for development into a simple and reliable diagnostic for detecting multiple pathogens without target amplification.

Optimal Two Degrees-of-Freedom Based Neutral Point Potential Control for Three-Level Neutral Point Clamped Converters

  • Guan, Bo;Doki, Shinji
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.119-133
    • /
    • 2019
  • Although the dual modulation wave method can solve the low-frequency neutral point potential (NPP) fluctuation problem for three-level neutral point clamped converters, it also increases the switching frequency and limits the zero-sequence voltage. That makes it harmful when dealing with the NPP drift problem if the converter suffers from a long dead time or asymmetric loads. By introducing two degrees of freedom (2-DOF), an NPP control based on a search optimization method can demonstrate its ability to cope with the above mentioned two types of NPP problems. However, the amount of calculations for obtaining an optimal 2-DOF is so large that the method cannot be applied to certain industrial applications with an inexpensive digital signal processor. In this paper, a novel optimal 2-DOF-based NPP control is proposed. The relationships between the NPP and the 2-DOF are analyzed and a method for directly determining the optimal 2-DOF is also discussed. Using a direct calculation method, the amount of calculations is significantly reduced. In addition, the proposed method is able to maintain the strongest control ability for the two types of NPP problems. Finally, some experimental results are given to confirm the validity and feasibility of the proposed method.

Bovine Lactoferricin Induces Intestinal Epithelial Cell Activation through Phosphorylation of FAK and Paxillin and Prevents Rotavirus Infection

  • Jeong, Ye Young;Lee, Ga Young;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1175-1182
    • /
    • 2021
  • We investigated the effect of bovine lactoferricin (Lfcin-B), a peptide derived from bovine lactoferrin, on activation of intestinal epithelial cells in IEC-6 intestinal cell, and protection against in vivo rotavirus (RV) infection. Treatment with Lfcin-B significantly enhanced the growth of IEC-6 cells and increased their capacity for attachment and spreading in culture plates. Also, Lfcin-B synergistically augmented the binding of IEC-6 cells to laminin, a component of the extracellular matrix (ECM). In the analysis of the intracellular mechanism related to Lfcin-B-induced activation of IEC-6 cells, this peptide upregulated tyrosine-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin, which are intracellular proteins associated with cell adhesion, spreading, and signal transduction during cell activation. An experiment using synthetic peptides with various sequences of amino acids revealed that a sequence of 9 amino acids (FKCRRWQWR) corresponding to 17-25 of the N-terminus of Lfcin-B is responsible for the epithelial cell activation. In an in vivo experiment, treatment with Lfcin-B one day before RV infection effectively prevented RV-induced diarrhea and significantly reduced RV titers in the bowels of infected mice. These results suggest that Lfcin-B plays meaningful roles in the maintenance and repair of intestinal mucosal tissues, as well as in protecting against intestinal infection by RV. Collectively, Lfcin-B is a promising candidate with potential applications in drugs or functional foods beneficial for intestinal health and mucosal immunity.

Precision Improvement Technique of Propagation Delay Distance Measurement Using IEEE 1588 PTP (IEEE 1588 PTP를 이용한 전파 지연 거리 측정의 정밀도 향상 기법)

  • Gu, Young Mo;Boo, Jung-il;Ha, Jeong-wan;Kim, Bokki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.515-519
    • /
    • 2021
  • IEEE 1588 PTP is a precision time protocol in which two systems synchronize without the aid of GPS by exchanging packets including transmission/reception time information. In the time synchronization process, the propagation delay time can be calculated and the distance between the two systems can be measured using this. In this paper, we proposed a method to improve the distance measurement precision less than the modulation symbol period using the timing error information extracted from the preamble of the received packet. Computer simulations show that the distance measurement precision is proportional to the length of the preamble PN sequence and the signal-to-noise ratio.