• Title/Summary/Keyword: signal progression

Search Result 146, Processing Time 0.028 seconds

Clinical Utility of Prominent Hypointense Signals in the Draining Veins on Susceptibility-Weighted Imaging in Acute Cerebral Infarct: As a Marker of Penumbra and a Predictor of Prognosis (급성 뇌경색에서 자화율강조영상에서 보이는 현저한 유출정맥 저신호 강도의 임상적 유용성: Penumbra 및 예후 예측인자로서 가능성)

  • Lee, Hyun Sil;Ahn, Kook Jin;Choi, Hyun Seok;Jang, Jin Hee;Jung, So Lyung;Kim, Bum Soo;Yang, Dong Won
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.332-340
    • /
    • 2014
  • Purpose : A relative increase in deoxyhemoglobin levels in hypoperfused tissue can cause prominent hypointense signals in the draining veins (PHSV) within areas of impaired perfusion in susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of SWI in patients with acute cerebral infarction by evaluating PHSV within areas of impaired perfusion and to investigate the usefulness of PHSV in predicting prognosis of cerebral infarction. Materials and Methods: In 18 patients with acute cerebral infarction who underwent brain MRI with diffusion-weighted imaging and SWI and follow-up brain MRI or CT, we reviewed the presence and location of the PHSV within and adjacent to areas of cerebral infarction qualitatively and measured the signal intensity difference ratio of PHSVs to contralateral normal appearing cortical veins quantitatively on SWI. The relationship between the presence of the PHSV and the change in the extent of infarction in follow-up images was analyzed. Results: Of the 18 patients, 10 patients showed progression of the infarction, and 8 patients showed little change on follow- up imaging. On SWI, of the 10 patients with progression 9 patients showed peripheral PHSV and the newly developed infarctions corresponded well to area with peripheral PHSV on initial SWI. Only one patient without peripheral PHSV showed progression of the infarct. The patients with infarction progression revealed significantly higher presence of peripheral PHSV (p=0.0001) and higher mean signal intensity difference ratio (p=0.006) comparing to the patients with little change. Conclusion: SWI can demonstrate a peripheral PHSV as a marker of penumbra and with this finding we can predict the prognosis of acute infarction. The signal intensity difference of PHSV to brain tissue on SWI can be used in predicting prognosis of acute cerebral infarction.

Regulation of signal transducer and activator of transcription 3 activation by dual-specificity phosphatase 3

  • Kim, Ba Reum;Ha, Jain;Kang, Eunjeong;Cho, Sayeon
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.335-340
    • /
    • 2020
  • Since cancer is the leading cause of death worldwide, there is an urgent need to understand the mechanisms underlying cancer progression and the development of cancer inhibitors. Signal transducer and activator of transcription 3 (STAT3) is a major transcription factor that regulates the proliferation and survival of various cancer cells. Here, dual-specificity phosphatase 3 (DUSP3) was identified as a regulator of STAT3 based on an interaction screening performed using the protein tyrosine phosphatase library. DUSP3 interacted with the C-terminal domain of STAT3 and dephosphorylated p-Y705 of STAT3. In vitro dephosphorylation assay revealed that DUSP3 directly dephosphorylated p-STAT3. The suppressive effects of DUSP3 on STAT3 were evaluated by a decreased STAT3-specific promoter activity, which in turn reduced the expression of the downstream target genes of STAT3. In summary, DUSP3 downregulated the transcriptional activity of STAT3 via dephosphorylation at Y705 and also suppressed the migratory activity of cancer cells. This study demonstrated that DUSP3 inhibits interleukin 6 (IL-6)/STAT3 signaling and is expected to regulate cancer development. Novel functions of DUSP3 discovered in IL-6/STAT3 signaling regulation would help expand the understanding of cancer development mechanisms.

Mitogen-activated Protein Kinases in the Development of Normal and Diseased Kidneys

  • Awazu, Midori
    • Childhood Kidney Diseases
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Mitogen-activated protein kinases (MAPKs) play important roles in various cellular functions including proliferation, differentiation, and apoptosis. We showed that MAPKs are developmentally regulated in the rat kidney. p38 MAPK (p38) and extracellular signal-regulated kinase (ERK) were strongly expressed in the fetal kidney, whereas c-Jun N-terminal kinase (JNK) was detected predominantly in the adult kidney. The inhibition of p38 or ERK in organ culture resulted in reduced nephron formation with or without reduced kidney size. On the other hand, persistent fetal expression pattern of MAPKs, i.e., upregulation of p38 and ERK and downregulation of JNK, was observed in the cyst epithelium of human renal dysplasia, ovine fetal obstructive uropathy, and pcy mice, a model of polycystic kidney disease. Furthermore, activated p38 and ERK induced by cyclic stretch mediated proliferation and $TGF-{\beta}1$ expression in ureteric bud cells, probably leading to cyst formation and dysplastic changes. Inhibition of ERK slowed the disease progression in pcy mice. Finally, ERK and p38 were inactivated in the early embryonic kidney subjected to maternal nutrient restriction, characterized by reduced ureteric branching and nephron number. Thus, MAPKs mediate the development of normal and diseased kidney. Their modulation may result in novel therapeutic strategies against developmental abnormalities of the kidney.

Design and Implementation of Bioluminescence Signal Analysis Tool

  • Jeong, Hye-Jin;Lee, Byeong-Il;Hwang, Hae-Gil;Song, Soo-Min;Min, Jung-Joon;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1580-1587
    • /
    • 2006
  • The term molecular imaging can be broadly defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level. Optical imaging that has highly reproducibility and repetition used in molecular imaging research. In the bioluminescence imaging, animals carrying the luciferase gene are imaged with a cooled CCD(Charge-Coupled Device) camera to pick up the small number of photons transmitted through tissues. Molecular imaging analysis will allow us to observe the incipience and progression of the disease. But hardware device for molecular imaging and software for molecular image analysis were dependent on imports. In this paper, we suggest image processing methods and designed software for bioluminescence signal analysis. And we demonstrated high correlation(r=0.99) between our software's photon counts and commercial software's photon counts. ROI function and processing functions were accomplished without error. This study have the importance of the development software for bioluminescence image processing and analysis. And this study built the foundations for creative development of analysis methods. We expected this study lead the development of image technology.

  • PDF

PSNR Analysis of Ultrasound Images for Follow-up of Hepatocellular Carcinoma (간세포암 추적관찰 초음파영상의 PSNR 분석)

  • Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.263-267
    • /
    • 2015
  • In this paper, a method was proposed for objective and scientific judgment on disease conditions that is currently relied on subjective judgment of ultrasound practitioners. In the proposed method, mean squared errors (MSE) in ultrasound images for follow-up of HCC patients were obtained and the Peak Signal to Noise Ratio(PSNR) of the ultrasound images was analyzed. According to the results of analysis, MSE and PSNR values changed over time. This is attributable to changes in ultrasound images resulting from increases in utrasonic echoes following the progression of HCC. The results of the present study can be used as a method for scientific and objective judgment in ultrasonic scan instead of current subjective judgment by practitioners.

A Novel Resource Allocation Algorithm in Multi-media Heterogeneous Cognitive OFDM System

  • Sun, Dawei;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.691-708
    • /
    • 2010
  • An important issue of supporting multi-users with diverse quality-of-service (QoS) requirements over wireless networks is how to optimize the systematic scheduling by intelligently utilizing the available network resource while, at the same time, to meet each communication service QoS requirement. In this work, we study the problem of a variety of communication services over multi-media heterogeneous cognitive OFDM system. We first divide the communication services into two parts. Multimedia applications such as broadband voice transmission and real-time video streaming are very delay-sensitive (DS) and need guaranteed throughput. On the other side, services like file transmission and email service are relatively delay tolerant (DT) so varying-rate transmission is acceptable. Then, we formulate the scheduling as a convex optimization problem, and propose low complexity distributed solutions by jointly considering channel assignment, bit allocation, and power allocation. Unlike prior works that do not care computational complexity. Furthermore, we propose the FAASA (Fairness Assured Adaptive Sub-carrier Allocation) algorithm for both DS and DT users, which is a dynamic sub-carrier allocation algorithm in order to maximize throughput while taking into account fairness. We provide extensive simulation results which demonstrate the effectiveness of our proposed schemes.

Chordoid Glioma Originating in the Intrasellar and Suprasellar Regions: Case Report

  • Hwang, Jisun;Lee, Aleum;Chang, Kee-Hyun;Moon, Ah Rim;Hwang, Sun-Chul;Hong, Hyun Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.117-121
    • /
    • 2015
  • Chordoid glioma is a rare, low-grade brain neoplasm typically located in the third ventricle. Herein, we report an unusual case of histologically confirmed chordoid glioma located in the pituitary fossa and suprasellar region, not attached to the third ventricle. A 57-year-old woman presented with a 2-month history of headache and visual disturbance. Magnetic resonance imaging revealed an ovoid mass in the pituitary fossa and suprasellar region, compressing the optic chiasm without involvement of the third ventricle. The tumor showed low signal intensity on T1-weighted images and iso- to high signal intensity on T2-weighted images, with strong and homogenous contrast enhancement. Subtotal resection was performed via the transcranial approach, and the patient subsequently received adjuvant gamma knife radiosurgery. However, the residual mass showed disease progression 5 months after the initial surgery.

Application and Evaluation of a Traffic Signal Control Algorithm based on Travel Time Information for Coordinated Arterials (연동교차로를 위한 통행시간기반 신호제어 알고리즘의 현장 적용 및 평가)

  • Jeong, Yeong-Je;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.179-187
    • /
    • 2009
  • This study develops a real-time signal control algorithm based on sectional travel times and includes a field test and evaluation. The objective function of the signal control algorithm is the equalization of delay of traffic movements, and the main process is calculating dissolved time of the queue and delay using the sectional travel time and detection time of individual vehicles. Then this algorithm calculates the delay variation and a targeted red time and calculates the length of the cycle and phase. A progression factor from the US HCM was applied as a method to consider the effect of coordinating the delay calculation, and this algorithm uses the average delay and detection time of probe vehicles, which were collected during the accumulated cycle for a stabile signal control. As a result of the field test and evaluation through the application of the traffic signal control algorithm on four consecutive intersections at 400m intervals, reduction of delay and an equalization effect of delay against TOD control were confirmed using the standard deviation of delay by traffic movements. This study was conducted to develop a real-time traffic signal control algorithm based on sectional travel time, using general-purpose traffic information detectors. With the current practice of disseminating ubiquitous technology, the aim of this study was a fundamental change of the traffic signal control method.

Traffic Signal Control Strategy for Passive Tram Signal Priority on City Arterial (도시부 간선도로의 고정식 트램 우선신호를 위한 교통신호운영 전략)

  • Jeong, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This research proposes new tram signal coordination model, called MAXBAND MILP-Tram for a passive tram signal priority strategy. The proposed model was formulated based on the MAXBAND model that was a traditional arterial signal optimization model. The model could calculate the bandwidth solutions for both general-purpose-lane traffic and median-tram-lane traffic. Lower progression speed are applied for the tram traffic considering lower running speed and dwell time at the stations. A phase sequence procedure determines the green times and left-turn phase sequences for tram traffic in median tram lane. To estimate the performance of the MILP-Tram model, the control delay of trams were estimated using the micro simulation model, VISSIM. The analysis results showed 57 percent decrease of the tram compared to the conventional signal timing model. The delay for car, however, increased 18 percent. The sensitivity analysis indicated that the passive tram signal priority strategy using the offset and phase sequence optimization was effective in reducing the person delay under the congested traffic condition.

Platelet-derived Growth Factor Signaling and Human Cancer

  • Yu, Jiu-Hong;Ustach, Carolyn;ChoiKim, Hyeong-Reh
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • Platelet-derived growth factor (PDGF) is a critical regulator of mesenchymal cell migration and proliferation. The vital functions of PDGFs for angiogenesis, as well as development of kidney, brain, cardiovascular system and pulmonary alveoli during embryogenesis, have been well demonstrated by gene knock-out approaches. Clinical studies reveal that aberrant expression of PDGF and its receptor is often associated with a variety of disorders including atherosclerosis, fibroproliferative diseases of lungs, kidneys and joints, and neoplasia. PDGF contributes to cancer development and progression by both autocrine and paracrine signaling mechanisms. In this review article, important features of the PDGF isoforms and their cell surface receptor subunits are discussed, with regards to signal transduction, PDGF-isoform specific cellular response, and involvement in angiogenesis, and tumorstromal interactions.