• Title/Summary/Keyword: signal pattern classification

Search Result 188, Processing Time 0.026 seconds

ECG Pattern Classification Using Back-Propagation Neural Network (역전달 신경회로망을 이용한 심전도 패턴분류)

  • Lee, Je-Suk;Kwon, Hyuk-Je;Lee, Jung-Whan;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.47-50
    • /
    • 1992
  • This paper describes pattern classification algorithm of ECG using back-propagation neural network. We presents new feature extractor using second order approximating function as the input signals of neural network. We use 9 significant parameters which were extracted by feature extractor. 5 most characterized ECG signal pattern is classified accurately by neural network. We use AHA database to evaluate the performance ol the proposed pattern classification algorithm.

  • PDF

Implementation of simple statistical pattern recognition methods for harmful gases classification using gas sensor array fabricated by MEMS technology (MEMS 기술로 제작된 가스 센서 어레이를 이용한 유해가스 분류를 위한 간단한 통계적 패턴인식방법의 구현)

  • Byun, Hyung-Gi;Shin, Jeong-Suk;Lee, Ho-Jun;Lee, Won-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.406-413
    • /
    • 2008
  • We have been implemented simple statistical pattern recognition methods for harmful gases classification using gas sensors array fabricated by MEMS (Micro Electro Mechanical System) technology. The performance of pattern recognition method as a gas classifier is highly dependent on the choice of pre-processing techniques for sensor and sensors array signals and optimal classification algorithms among the various classification techniques. We carried out pre-processing for each sensor's signal as well as sensors array signals to extract features for each gas. We adapted simple statistical pattern recognition algorithms, which were PCA (Principal Component Analysis) for visualization of patterns clustering and MLR (Multi-Linear Regression) for real-time system implementation, to classify harmful gases. Experimental results of adapted pattern recognition methods with pre-processing techniques have been shown good clustering performance and expected easy implementation for real-time sensing system.

Classification of Underwater Transient Signals Using Gaussian Mixture Model (정규혼합모델을 이용한 수중 천이신호 식별)

  • Oh, Sang-Hwan;Bae, Keun-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1870-1877
    • /
    • 2012
  • Transient signals generally have short duration and variable length with time-varying and non-stationary characteristics. Thus frame-based pattern matching method is useful for classification of transient signals. In this paper, we propose a new method for classification of underwater transient signals using a Gaussian mixture model(GMM). We carried out classification experiments for various underwater transient signals depending upon the types of noise, signal-to-noise ratio, and number of mixtures in the GMM. Experimental results have verified that the proposed method works quite well for classification of underwater transient signals.

A Study on the Signal Processing Techiques for Pattern Classification of Electrical Loads (전기부하 패턴분류를 위한 신호처리 기법에 관한 연구)

  • Lim, Young Bae;Kim, Dong Woo;Jin, Sangmin;Cho, Seongwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.409-415
    • /
    • 2016
  • Recently several techniques for disaster prevention based on IoT(Internet of Things) are being developed. In this paper, a new smart pattern classification method for electric loads is proposed. CT(Current Transformer) data are extracted from electric loads, and then the sampled CT data are converted using FFT and MFCC. FFT and FMCC data are used for the input data of neural networks. Experiments were conducted using FFT and MFCC data for 7 kinds of electric loads. Experiments results indicate the superiority of MFCC in comparison to FFT.

Development of Adaptive Signal Pattern Recognition Program and Application to Classification of Defects in Weld Zone by AE Method (적응형 신호 형상 인식 프로그램 개발과 AE법에 의한 용접부 결함 분류에 관한 적용 연구)

  • Lee, K.Y.;Lim, J.M.;Kim, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.34-45
    • /
    • 1996
  • The signal pattern recognition program which can perform signal acquisition and processing, the extraction and selection of features, the classifier design and the evaluation, is developed and applied to the classification of artificial defects in the weld zone of Austenitic STS304. The neural network classifier is compared with the linear discriminant function classifier and the empirical Bayesian classifier. The signal through a broadband sensor is compared with that through a resonance type sensor. In recognition rate, the neural network classifier is best, and the signal through a broadband sensor is better.

  • PDF

A study on the motion decision of the arm using pattern recognition of EMG signal (EMG신호의 패턴인식을 이용한 동작판정에 관한 연구)

  • 홍석교;고영길;유근호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.694-698
    • /
    • 1987
  • In this paper, the primitive and double combined motion classification of the arm is discussed using pattern recognition of EM signal. The EM signals are detected from Ag-Ag/Cl surface electrodes, and IBM PC, calculated the Likelyhood probability and the decision function on the feature space of integral absolute value. Multiclass decision rule is introduced for higher decision rate. On our experimental results from expert simulator, the decision rate of more than 78% can be obtained.

  • PDF

Pattern classification of EMG signals by the syntactic analysis (구문론적 해석에 의한 근전도 신호의 패턴 분류)

  • 왕문성;박상희;정태윤;변윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.699-701
    • /
    • 1987
  • This paper deals With the EMG signal processing to apply the EMG signal to the Prosthetic arm. The EMG signals are generated by the voluntary contractions of the subject's musculature and is coded into binary words by the pulse width modulation. Command strings or sentences are constructed by concatenating several words, and are syntactically described by a context free grammar in Chomsky normal form and is tried to classify the movement pattern by the CYK algorithm.

  • PDF

Improved Algorithm of Hybrid c-Means Clustering for Supervised Classification of Remote Sensing Images (원격탐사 영상의 감독분류를 위한 개선된 하이브리드 c-Means 군집화 알고리즘)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • Remote sensing images are multispectral image data collected from several band divided by wavelength ranges. The classification of remote sensing images is the method of classifying what has similar spectral characteristics together among each pixel composing an image as the important algorithm in this field. This paper presents a pattern classification method of remote sensing images by applying a possibilistic fuzzy c-means (PFCM) algorithm. The PFCM algorithm is a hybridization of a FCM algorithm, which adopts membership degree depending on the distance between data and the center of a certain cluster, combined with a PCM algorithm, which considers class typicality of the pattern sets. In this proposed method, we select the training data for each class and perform supervised classification using the PFCM algorithm with spectral signatures of the training data. The application of the PFCM algorithm is tested and verified by using Landsat TM and IKONOS remote sensing satellite images. As a result, the overall accuracy showed a better results than the FCM, PCM algorithm or conventional maximum likelihood classification(MLC) algorithm.

  • PDF

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

DNA Inspired CVD Diagnostic Hardware Architecture (DNA 특성을 모방한 심혈관질환 진단용 하드웨어)

  • Kwon, Oh-Hyuk;Kim, Joo-Kyung;Ha, Jung-Woo;Park, Jea-Hyun;Chung, Duck-Jin;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.320-326
    • /
    • 2008
  • In this paper, we propose a new algorithm emulating the DNA characteristics for noise-tolerant pattern matching problem on digital system. The digital pattern matching becomes core technology in various fields, such as, robot vision, remote sensing, character recognition, and medical diagnosis in particular. As the properties of natural DNA strands allow hybridization with a certain portion of incompatible base pairs, DNA-inspired data structure and computation technique can be adopted to bio-signal pattern classification problems which often contain imprecise data patterns. The key feature of noise-tolerance of DNA computing comes from control of reaction temperature. Our hardware system mimics such property to diagnose cardiovascular disease and results superior classification performance over existing supervised learning pattern matching algorithms. The hardware design employing parallel architecture is also very efficient in time and area.