• 제목/요약/키워드: signal pattern classification

검색결과 188건 처리시간 0.024초

단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류 (One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal)

  • 조민영;백준걸
    • 산업공학
    • /
    • 제25권2호
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법 (R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments)

  • 조익성
    • 디지털산업정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

Classification of Emotional States of Interest and Neutral Using Features from Pulse Wave Signal

  • Phongsuphap, Sukanya;Sopharak, Akara
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.682-685
    • /
    • 2004
  • This paper investigated a method for classifying emotional states by using pulse wave signal. It focused on finding effective features for emotional state classification. The emptional states considered here consisted of interest and neutral. Classification experiments utilized 65 and 60 samples of interest and neutral states respectively. We have investigated 19 features derived from pulse wave signals by using both time domain and frequency domain analysis methods with 2 classifiers of minimum distance (normalized Euclidean distanece) and ${\kappa}$-Nearest Neighbour. The Leave-one-out cross validation was used as an evaluation mehtod. Based on experimental results, the most efficient features were a combination of 4 features consisting of (i) the mean of the first differences of the smoothed pulse rate time series signal, (ii) the mean of absolute values of the second differences of thel normalized interbeat intervals, (iii) the root mean square successive difference, and (iv) the power in high frequency range in normalized unit, which provided 80.8% average accuracy with ${\kappa}$-Nearest Neighbour classifier.

  • PDF

Wavelet-based detection and classification of roof-corner pressure transients

  • Pettit, Chris L.;Jones, Nicholas P.;Ghanem, Roger
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.159-175
    • /
    • 2000
  • Many practical time series, including pressure signals measured on roof-corners of low-rise buildings in quartering winds, consist of relatively quiescent periods interrupted by intermittent transients. The dyadic wavelet transform is used to detect these transients in pressure time series and a relatively simple pattern classification scheme is used to detect underlying structure in these transients. Statistical analysis of the resulting pattern classes yields a library of signal "building blocks", which are useful for detailed characterization of transients inherent to the signals being analyzed.

관계상관식을 이용한 QRS 패턴분류 (Pattern Classification of the QRS-complexes Using Relational Correlation)

  • 황선철;정희교;신건수;이병채;이명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.428-431
    • /
    • 1990
  • This paper describes a pattern classification algorithm of QRS-complexes using significant point detection for extracting features of signals. Significant point extraction was processed by zero-crossing method, and decision function based on relational spectrum was used for pattern classification of the QRS-complexes. The hierarchical AND/OR graph was obtained by decomposing the signal, and by use of this graph, QRS's patterns were classified. By using the proposed algorithm, the accuracy of pattern classification and the processing speed were improved.

  • PDF

배관용접부 결함검사 자동화 시스템 개발 (The Development of Automatic Inspection System for Flaw Detection in Welding Pipe)

  • 윤성운;송경석;차용훈;김재열
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.87-92
    • /
    • 2006
  • This paper supplements shortcoming of radioactivity check by detecting defect of SWP weld zone using ultrasonic wave. Manufacture 2 stage robot detection systems that can follow weld bead of SWP by method to detect weld defects of SWP that shape of weld bead is complex for this as quantitative. Also, through signal processing ultrasonic wave defect signal system of GUI environment that can grasp easily existence availability of defect because do videotex compose. Ultrasonic wave signal of weld defects develops artificial intelligence style sightseeing system to enhance pattern recognition of weld defects and the classification rate using neural net. Classification of weld defects that do fan Planar defect and that do volume defect of by classify.

원형 구조 알고리즘을 이용한 근전도 패턴 인식 및 분류 (Electromyography Pattern Recognition and Classification using Circular Structure Algorithm)

  • 최유나;성민창;이슬아;최영진
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.62-69
    • /
    • 2020
  • This paper proposes a pattern recognition and classification algorithm based on a circular structure that can reflect the characteristics of the sEMG (surface electromyogram) signal measured in the arm without putting the placement limitation of electrodes. In order to recognize the same pattern at all times despite the electrode locations, the data acquisition of the circular structure is proposed so that all sEMG channels can be connected to one another. For the performance verification of the sEMG pattern recognition and classification using the developed algorithm, several experiments are conducted. First, although there are no differences in the sEMG signals themselves, the similar patterns are much better identified in the case of the circular structure algorithm than that of conventional linear ones. Second, a comparative analysis is shown with the supervised learning schemes such as MLP, CNN, and LSTM. In the results, the classification recognition accuracy of the circular structure is above 98% in all postures. It is much higher than the results obtained when the linear structure is used. The recognition difference between the circular and linear structures was the biggest with about 4% when the MLP network was used.

다중 채널을 갖는 근전도의 신호처리에 관한 연구 (I) (A study on the ENG Signal Processing for Multichannel System)

  • 권장우;장영건;정동명;민홍기;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 추계학술대회
    • /
    • pp.25-29
    • /
    • 1991
  • In the field of prosthesis arm control, tile pattern classification of the EMG signal is a required basis process and also the estimation of force from col looted EMG data is another necessary duty. But unfortunately, what we've got is not real force but an EMG signal which contains the information of force. This is the reason why he estimate the force from the EMG data. In this paper, when we handle the EMG signal to estimate the force, spatial prewhitening process is applied from which the spatial correlation between the channels are removed. And after the orthogonal transformation, which is used in the force estimation process the transformed signal is inputed into the probabilistic model for pattern classification. To verify the different results of the multiple channels, SNR(signal to noire ratio) function is introduced.

  • PDF

데이터 마이닝에서 패턴 분류를 위한 다중 SVM 분류기 (Multiple SVM Classifier for Pattern Classification in Data Mining)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.289-293
    • /
    • 2005
  • 패턴 분류는 실세계의 객체를 표현한 다양한 형태의 패턴 정보를 추출하여, 이것이 어떤 부류(클래스)인가를 결정하는 것이다. 패턴 분류 기술은 데이터 마이닝, 산업 자동화나 업무자동화를 위한 컴퓨터 응용 소프트웨어 기술로서 현재 다양한 분야에서 활용되고 있다. 패턴 분류 기술의 최대 목표는 분류 성능 향상이며 이것을 위해 지난 40년간 많은 연구자들이 다양한 접근 방법들을 시도해 왔다. 주로 이용되는 단일 분류 방법들로는 패턴들의 확률적 추론에 기반한 베이즈 분류기, 결정 트리, 거리함수를 이용하는 방법, 신경망, 군집화 등이 있으나 대용량 다차원 데이터를 분석하기에는 효율적이지 못하다. 따라서 상호 보완적인 여러 분류기들을 사용해 결합을 통하여 성능 향상에 도움을 주고 있는 다중 분류기 시스템에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 다중 SVM(Support Vector Machine) 분류기에 관한 기존 연구의 문제점을 지적하고 새로운 모델을 제안한다. SVM을 다중 클래스 분류기로 확장하기 위해 일대다 정책을 기반으로 하여 각각의 SVM 출력값을 비선형 패턴을 갖는 신호로 간주하고 이를 신경망에 학습하여 최종 분류 성능 결과를 결합하는 모델인 BORSE(Bootstrap Resampling SVM by Ensemble)를 제안한다.

Personalized Specific Premature Contraction Arrhythmia Classification Method Based on QRS Features in Smart Healthcare Environments

  • Cho, Ik-Sung
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.212-217
    • /
    • 2021
  • Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.