• 제목/요약/키워드: signal pattern classification

검색결과 188건 처리시간 0.029초

UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구 (Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld)

  • 이강용;김준섭
    • 비파괴검사학회지
    • /
    • 제15권4호
    • /
    • pp.531-539
    • /
    • 1996
  • 본 연구에서는 초음파 신호형상인식법을 이용하여 용접부의 인공 결함을 분류하기 위한 연구를 실시하였다. 이를 위해 신호처리 및 특징 변수를 추출할 때에 많은 사용자 정의 변수를 가지는 신호 형상 인식 패키지를 개발하였으며 디지탈 신호처리, 특징 변수 추출, 특징 변수의 선택, 분류기 선정 등의 과정을 일괄적으로 처리하였다. 특히, 선형 분류기, 경험적 Bayesian 분류기 등의 통계적 분류기와 신경회로망 분류기를 함께 사용하여 비교, 검토하였다. 이에 관한 적용 연구로 노치와 구멍으로 이루어진 인공 결함을 분류하였다. 그 결과 인공결함 분류에서 높은 인식률을 얻었으며, 특히 적절히 학습 시켰을 경우 신경회로망 분류기가 통계적 분류기에 비하여 인식률 면에서 유리하였다.

  • PDF

용접결함의 형상인식을 위한 특징추출 (The Feature Extraction of Welding Flaw for Shape Recognition)

  • 김재열;유신;김창현;송경석;양동조;이창선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

AE 신호 형상 인식법에 의한 회전체의 신호 검출 및 분류 연구 (Detection and Classification of Defect Signals from Rotator by AE Signal Pattern Recognition)

  • 김구영;이강용;김희수;이현
    • 한국철도학회논문집
    • /
    • 제4권3호
    • /
    • pp.79-86
    • /
    • 2001
  • The signal pattern recognition method by acoustic emission signal is applied to detect and classify the defects of a journal bearing in a power plant. AE signals of main defects such as overheating, wear and corrosion are obtained from a small scale model. To detect and classify the defects, AE signal pattern recognition program is developed. As the classification methods, the wavelet transformation analysis, the frequency domain analysis and time domain analysis are used. Among three analyses, the wavelet transformation analysis is most effective to detect and classify the defects of the journal bearing..

  • PDF

미소결함의 형상인식을 위한 디지털 신호처리 적용에 관한 연구 (A Study on the Application of Digital Signal Processing for Pattern Recognition of Microdefects)

  • 홍석주
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.119-127
    • /
    • 2000
  • In this study the classified researches the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing feature extraction feature selection and classifi-er selection is teated by bulk,. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function the empirical Bayesian classifier. Also the pattern recognition technology is applied to classifica-tion problem of natural flaw(i.e multiple classification problem-crack lack of penetration lack of fusion porosity and slag inclusion the planar and volumetric flaw classification problem), According to this result it is possible to acquire the recognition rate of 83% above even through it is different a little according to domain extracting the feature and the classifier.

  • PDF

역전달 신경회로망을 이용한 심전도 신호의 패턴분류에 관한 연구 (ECG Pattern Classification Using Back Propagation Neural Network)

  • 이제석;이정환;권혁제;이명호
    • 전자공학회논문지B
    • /
    • 제30B권6호
    • /
    • pp.67-75
    • /
    • 1993
  • ECG pattern was classified using a back-propagation neural network. An improved feature extractor of ECG is proposed for better classification capability. It is consisted of preprocessing ECG signal by an FIR filter faster than conventional one by a factor of 5. QRS complex recognition by moving-window integration, and peak extraction by quadratic approximation. Since the FIR filter had a periodic frequency spectrum, only one-fifth of usual processing time was required. Also, segmentation of ECG signal followed by quadratic approximation of each segment enabled accurate detection of both P and T waves. When improtant features were extracted and fed into back-propagation neural network for pattern classification, the required number of nodes in hidden and input layers was reduced compared to using raw data as an input, also reducing the necessary time for study. Accurate pattern classification was possible by an appropriate feature selection.

  • PDF

퍼지-뉴럴 네트워크를 이용한 심전도 패턴 분류시스템 설계 (Design of ECG Pattern Classification System Using Fuzzy-Neural Network)

  • 김민수;이승로;서희돈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.273-276
    • /
    • 2002
  • This paper has design of ECG pattern classification system using decision of fuzzy IF-THEN rules and neural network. each fuzzy IF-THEN rule in our classification system has antecedent lingustic values and a single consequent class. we use a fuzzy reasoning method based on a single winner rule in the classification phase. this paper in, the MIT/BIH arrhythmia database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, we can effectively pattern classification by application of learned from neural networks.

  • PDF

형상인식을 이용한 압력용기 용접부 결함 특성 분류 (The Classification of U.T Defects in the Pressure Vessel Weld using the Pattern Recognition Analysis)

  • 심철무;주영상;홍순신;장기옥
    • 비파괴검사학회지
    • /
    • 제13권2호
    • /
    • pp.11-19
    • /
    • 1993
  • 원자력발전소의 주요 압력용기 용접부에 대한 초음파검사시 결함의 특성과 형태에 대한 정확한 분류는 원자력 발전소의 안전성을 확보하기 위한 결함평가에 중요한 요소이다. 본 연구에서 초음파검사에서 얻어진 결함신호를 digital signal processing 기법으로 처리하여 결함의 특성과 형태를 구분할 수 있는 feature vector를 추출하고 결함의 형태를 형상 인식법을 사용하여 분류 하였다. Training specimen(slit, hole)의 신호와 testing specimen(crack, slag)의 신호를 구분하기 위한 실험에서 사용된 통계적 pattern recognition algorithm은 minimum distance classifier와 maximum likelihood classifier이다. 이러한 형상 classifier를 이용하여 결함의 특성을 정량적으로 분류하여 결함 평가 능력을 향상시켰다.

  • PDF

대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류 (Arrhythmia Classification Method using QRS Pattern of ECG Signal according to Personalized Type)

  • 조익성;정종혁;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1728-1736
    • /
    • 2015
  • 부정맥 분류를 위한 기존 연구들은 개인별 ECG신호의 차이는 고려하지 않고 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 또한 기존의 방법들은 각 ECG 특징점의 정확한 측정을 필요로 하며, 연산이 매우 복잡하다. 복잡도를 줄이기 위한 여러 가지 방법들이 제안되었지만, 그에 따른 분류의 정확도가 떨어지는 문제점이 있었다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 다양한 ECG 신호의 패턴에 따라 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고 부정맥을 정확하게 분류 할 수 있는 방법이 필요하다. 본 연구에서는 대상 유형별 ECG 신호의 QRS 패턴을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 QRS 특징점을 통해 대상 유형별 ECG 신호의 QRS 패턴을 정의하였다. 이후 패턴분류에 따른 오류를 검출 및 수정하고, 중복된 QRS 패턴을 별도의 부정맥으로 분류하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 43개의 레코드를 대상으로 PVC, PAC, Normal, LBBB, RBBB, Paced beat의 검출율을 비교하였다. 실험결과 Normal, PVC, PAC, LBBB, RBBB, Paced beat의 검출율은 각각 99.98, 97.22 95.14, 91.47, 94.85, 97.48%의 우수한 검출율을 나타내었다.

초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류 (Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal)

  • 임내묵;신동환;김덕영;김성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF

신택틱 패턴 인식 알고리즘에 의한 심전도 신호의 패턴 분류에 관한 연구 (A Study of ECG Pattern Classification of Using Syntactic Pattern Recognition)

  • 남승우;이명호
    • 대한의용생체공학회:의공학회지
    • /
    • 제12권4호
    • /
    • pp.267-276
    • /
    • 1991
  • This paper describes syntactic pattern recognition algorithm for pattern recognition and diagnostic parameter extraction of ECG signal. ECG signal which is represented linguistic string is evaluated by pattern grammar and its interpreter-LALR(1) parser for pattern recognition. The proposed pattern grammar performs syntactic analysis and semantic evaluation simultaneously. The performance of proposed algorithm has been evaluated using CSE database.

  • PDF