• 제목/요약/키워드: signal pathways

검색결과 566건 처리시간 0.024초

Cancer Chemoprevention by Tea Polyphenols Through Modulating Signal Transduction Pathways

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.561-571
    • /
    • 2002
  • The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, P13K, phosphatases, ras, raf, MAPK cascades, NㆍFB, IㆍB kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The IㆍB kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gal-late (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of IㆍBㆍand IㆍBㆍin activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkB activation as wll as c-myc, c-jun and c-fos expression.

The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

  • Netto, Luis E.S.;Antunes, Fernando
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.65-71
    • /
    • 2016
  • A challenge in the redox field is the elucidation of the molecular mechanisms, by which $H_2O_2$ mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the $H_2O_2$ sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in $H_2O_2$ signaling that are not mutually exclusive. In the simplest pathway, $H_2O_2$ signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by $H_2O_2$ is too slow ($10^1M^{-1}s^{-1}$ range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high $H_2O_2$ concentrations, making the direct oxidation feasible. Alternatively, high $H_2O_2$ levels can hyperoxidize peroxiredoxins leading to local building up of $H_2O_2$ that then could oxidize a signaling protein (floodgate hypothesis). In a second model, $H_2O_2$ oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.

8주간 운동이 생쥐의 gastrocnemius에서 Bcl-2, Bax, caspase-8, caspase-3와 HSP70에 미치는 영향 (Effects of 8-week Exercise on Bcl-2, Bax, Caspase-8, Caspase-3 and HSP70 in Mouse Gastrocnemius Muscle)

  • 김기범;김용안;박정준
    • 생명과학회지
    • /
    • 제20권9호
    • /
    • pp.1409-1414
    • /
    • 2010
  • 이 연구는 실험용 쥐를 대상으로 운동에 따라 골격근에서 일어나는 세포고사 경로 중 내인성 경로와 외인성경로에 의해 이루어지는 세포고사의 신호기전을 확인하여 운동이 세포고사에 어떠한 영향을 미치는지에 대한 구명하는데 있다. 이를 위해 ICR계 수컷 흰쥐 20마리를 일주일의 적응기간을 거쳐 통제집단(CON: n=10)과 운동집단(EX: n=10)으로 배정하였다. 운동은 8주간 주 5회 실시하였고, 트레드밀 속도 16.4 m/min와 경사도 4%로 설정하여 40분간 지속적인 운동을 실시하였다. 세포고사의 신호 경로 중 내인성 경로에 대한 검증 결과 Bcl-2, Bax 단백질, 그리고 Bcl-2/ Bax ratio는 그룹간 통계적 유의성은 나타나지 않았다. 반면, 세포고사의 경로 중 외인성 경로에 대한 검증 결과 caspase-8 단백질의 발현은 운동집단이 통제집단보다 유의하게 낮은 것으로 나타났으며(p<0.05), 세포고사 억제 단백질인 HSP70 단백질 발현은 운동집단이 통제집단보다 높게 나타났다. 더욱이, 세포고사 최종인자인 caspase-3의 활성화는 이루어 지지 않은 것으로 관찰되었다. 따라서 세포사멸의 신호경로 중 내인성 경로에 작용하는 Bcl-2와 Bax보다는 외인성 경로인 caspase-8과 HSP70의 영향으로 caspase-3가 분할되지 못하여 세포고사가 일어나지 않은 것으로 사료된다.

Cisplatin의 난소암 세포 증식 억제에 관한 신호 전달 기전 (Cisplatin Suppresses Proliferation of Ovarian Cancer Cells through Inhibition Akt and Modulation MAPK Pathways)

  • 최재선
    • 대한임상검사과학회지
    • /
    • 제52권1호
    • /
    • pp.62-68
    • /
    • 2020
  • Cisplatin (CDDP)은 난소암 치료에 사용되는 화학 요법제로 암세포에 따라 그리고 치료 용량에 따라 다중 신호경로를 활성화하여 세포 반응을 다르게 일으킬 수 있다. Cisplatin이 세포에 작용하는 신호전달 기전은 분명하지 않아 더 많은 연구가 필요해 보인다. 이에 본 연구는 cisplatin을 난소암 세포(SKOV3)에 처리하여 세포사멸 유도 과정에서 나타나는 신호 단백질의 역할을 밝히고자 하였다. 결과는 cisplatin으로 처리한 난소암 세포에서 TUNEL assay와 유세포 분석을 통해 대조군과 비교하여 세포 사멸수가 증가하였다. 세포 사멸 단계에서 나타나는 PARP 및 caspase-3 활성도 증가하였다. 그러나 Bcl-2의 발현은 감소하였다. 신호 전달 경로에서 나타나는 단백질의 발현은 ERK1/2의 활성은 시간 의존적으로 감소하였으나 Akt 활성은 24시간에 감소하다 48시간에서의 활성은 일정하였다. p38과 p-JUN의 활성은 24시간에 증가하는 것으로 나타났으나 48시간에서 p38의 활성은 감소하였으며 p-JUN의 활성은 일정하였다. 이상의 결과들을 토대로 결론은 cisplatin이 SKOV3 세포에서 Akt 활성을 감소하여 세포 증식을 억제하고 MAPK의 p38 발현을 조절하여 세포사멸을 유도하는 것으로 판단된다. 향후, 암치료 전략에 도움이 되는 cisplatin을 포함한 백금기반 화학요법제의 신호전달 기전을 밝히기 위한 더 많은 연구가 필요할 것으로 생각된다. 본 실험을 통해 제시한 결과는 MAPK 신호 경로를 타겟으로 하는 암 치료 전략에 유용하게 사용 될 수 있기를 기대한다.

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.

배초향으로부터 Grb2-Shc domain 결합저해 물질의 분리 (Isolation of Grb2-Shc Domain Binding Inhibition Component from Agastache rugosa)

  • 이은숙;안병태;이새봄;김혜경;복성해;정태숙
    • 생약학회지
    • /
    • 제30권4호
    • /
    • pp.404-408
    • /
    • 1999
  • SH2 domains and their associated catalytic or noncatalytic proteins constitute critical signal transduction targets for drug discovery. Grb2 associates with phosphotyrosine sites of the activated receptors or Shc via their SH2 domain to link receptor tyrosine kinases to ras signalling. Blocking of the Grb2-Shc complex may be to intervene the oncogenic signal transduction pathways and to develop a new antitumor drug. In the search for blockers of Grb2 SH2-Shc interaction, Lutein, a family of carotenoids, was isolated from the extract of the leaf of Agastache rugosa O. Kuntze as SH2 domain antagonists. The $IC_{50}$ of Lutein against Grb2-Shc binding was $6.8\;{\mu}M$.

  • PDF

Fine Tuning and Cross-talking of TGF-β Signal by Inhibitory Smads

  • Park, Seok-Hee
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.9-16
    • /
    • 2005
  • Transforming Growth Factor (TGF)-$\beta$ family, including TGF-$\beta$, bone morphorgenic protein (BMP), and activn, plays an important role in essential cellular functions such as proliferation, differentiation, apoptosis, tissue remodeling, angiognesis, immune responses, and cell adhesions. TGF-$\beta$ predominantly transmits the signals through serine/threonine receptor kinases and cytoplasmic proteins called Smads. Since the discovery of TGF-$\beta$ in the early 1980s, the dysregulation of TGF-$\beta$/Smad signaling has been implicated in the pathogenesis of human diseases. Among signal transducers in TGF-$\beta$/Smad signaling, inhibitory Smads (I-Smads), Smad6 and Smad7, act as major negative regulators forming autoinhibitory feedback loops and mediate the cross-talking with other signaling pathways. Expressions of I-Smads are mainly regulated on the transcriptional levels and post-translational protein degradations and their intracellular levels are tightly controlled to maintain the homeostatic balances. However, abnormal levels of I-Smads in the pathological conditions elicit the altered TGF-$\beta$ signaling in cells, eventually causing TGF-$\beta$-related human diseases. Thus, exploring the molecular mechanisms about the regulations of I-Smads may provide the therapeutic clues for human diseases induced by the abnormal TGF-$\beta$ signaling.

MCF-7 세포주에서$\gamma$선에 의한 세포신호 전달 관련 유전자의 발현 양상의 분석 (Signal Transduction-related Gene Expression Analysis in MCF-7 followed by $\gamma$-radiation)

  • 박지윤;황창일;박웅양;김진규;채영규
    • 환경생물
    • /
    • 제21권1호
    • /
    • pp.52-55
    • /
    • 2003
  • There is considerable evidence that ionizing radiation (IR) mediates checkpoint control, repair and cell death. In this study, we have used a high density microarray hybridization approach to characterize the transcriptional response of human breast carcinoma MCF-7 cell line to ${\gamma}$-radiation, such as 4 Gy 4 hr, 8 Gy 4 hr, and 8 Gy 12 hr. We found that exposure to ${\gamma}$-ray alters by at least a $log_2$ factor of 1.0 the expression of 115 known genes. Of the 66 genes affected by ${\gamma}$-radiation, 49 are down-regulated. In our results, the cellular response to irradiation includes induction of the c-jun and EGR1 early response genes. The present work has examined potential cytoplasmic signaling cascades that transduce IR-induced signals to the nucleus. 40S ribosomal protein s6 kinase modulates the activities of the mitogen activated protein kinase (MAPK) and c-Jun $NH_2$-terminal kinase (JNK1) cascades in human monocytic leukemia (U937/pREP4) cells. 14-3-3 family members are dimeric phosphoserine -binding proteins that participate in signal transduction and checkpoint control pathways.

Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis

  • Song, Yafeng;Nikoloff, Jonas M.;Zhan, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.963-977
    • /
    • 2015
  • The well-characterized gram-positive bacterium Bacillus subtilis is an outstanding industrial candidate for protein expression owing to its single membrane and high capacity of secretion, simplifying the downstream processing of secretory proteins. During the last few years, there has been continuous progress in the illustration of secretion mechanisms and application of this robust host in various fields of life science, such as enzyme production, feed additives, and food and pharmaceutical industries. Here, we review the developments of Bacillus subtilis as a highly promising expression system illuminating strong chemical- and temperatureinducible and other types of promoters, strategies for ribosome-binding-site utilization, and the novel approach of signal peptide selection. Furthermore, we outline the main steps of the Sec pathway and the relevant elements as well as their interactions. In addition, we introduce the latest discoveries of Tat-related complex structures and functions and the countless applications of this full-folded protein secretion pathway. This review also lists some of the current understandings of ATP-binding cassette transporters. According to the extensive knowledge on the genetic modification strategies and molecular biology of Bacillus subtilis, we propose some suggestions and strategies for improving the yield of intended productions. We expect this to promote striking future developments in the optimization and application of this bacterium.

Differential Induction of Protein Expression and Benzophenanthridine Alkaloid Accumulation in Eschscholtzia californica Suspension Cultures by Methyl Jasmonate and Yeast Extract

  • Cho, Hwa-Young;Rhee, Hong-Soon;H. Yoon, Sung-Yong;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.255-262
    • /
    • 2008
  • Methyl jasmonate (MJ) and yeast extract (YE) induce protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cell cultures. One hundred ${\mu}M$ MJ primarily induced dihydrosanguinarine $(509.0{\pm}7.4mg/l)$ ; 0.2g/l YE induced sanguinarine $(146.8{\pm}3.8mg/l)$ and an unknown compound. These results occur because dihydrobenzophenanthridine oxidase (DHBO) is induced by YE and not by MJ. YE and chitin (CHI) had similar effects on sanguinarine production and DHBO expression. Differential induction of secondary metabolites was shown in E. californica suspension cultures and the expression of proteins confirmed the metabolite results. Furthermore, treatment by various oligosaccharides helped us to understand the elicitation effect of YE in signal transduction pathways.