Browse > Article
http://dx.doi.org/10.4014/jmb.1501.01028

Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis  

Song, Yafeng (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
Nikoloff, Jonas M. (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
Zhan, Dawei (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 963-977 More about this Journal
Abstract
The well-characterized gram-positive bacterium Bacillus subtilis is an outstanding industrial candidate for protein expression owing to its single membrane and high capacity of secretion, simplifying the downstream processing of secretory proteins. During the last few years, there has been continuous progress in the illustration of secretion mechanisms and application of this robust host in various fields of life science, such as enzyme production, feed additives, and food and pharmaceutical industries. Here, we review the developments of Bacillus subtilis as a highly promising expression system illuminating strong chemical- and temperatureinducible and other types of promoters, strategies for ribosome-binding-site utilization, and the novel approach of signal peptide selection. Furthermore, we outline the main steps of the Sec pathway and the relevant elements as well as their interactions. In addition, we introduce the latest discoveries of Tat-related complex structures and functions and the countless applications of this full-folded protein secretion pathway. This review also lists some of the current understandings of ATP-binding cassette transporters. According to the extensive knowledge on the genetic modification strategies and molecular biology of Bacillus subtilis, we propose some suggestions and strategies for improving the yield of intended productions. We expect this to promote striking future developments in the optimization and application of this bacterium.
Keywords
Promoter; ribosome-binding site; signal peptide; Sec pathway; Tat pathway; ATP-binding cassette transporter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hoffmann T, Wensing A, Brosius M, Steil L, Volker U, Bremer E. 2013. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J. Bacteriol. 195: 510-522.   DOI
2 Hollenstein K, Dawson RJ, Locher KP. 2007. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17: 412-418.   DOI
3 Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W. 1997. The dnaK operon of Bacillus subtilis is heptacistronic. J. Bacteriol. 179: 1153-1164.   DOI
4 Hoskins JR, Sharma S, Sathyanarayana BK, Wickner S. 2001. Clp ATPases and their role in protein unfolding and degradation. Adv. Protein Chem. 59: 413-429.   DOI
5 Hu Y, Zhao E, Li H, Xia B, Jin C. 2010. Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis. J. Am. Chem. Soc. 132: 15942-15944.   DOI
6 Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, et al. 2001. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol. 41: 1159-1172.   DOI
7 Ferreira LC, Ferreira RC, Schumann W. 2005. Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors. An. Acad. Bras. Cienc. 77: 113-124.   DOI
8 Fischer KE, Bremer E. 2012. Activity of the osmotically regulated yqiHIK promoter from Bacillus subtilis is controlled at a distance. J. Bacteriol. 194: 5197-5208.   DOI
9 Frobel J, Rose P, Lausberg F, Blummel AS, Freudl R, Muller M. 2012. Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat. Commun. 3: 1311.   DOI
10 Frobel J, Rose P, Muller M. 2011. Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation. J. Biol. Chem. 286: 43679-43689.   DOI
11 Gao C, Xue Y, Ma Y. 2011. Protoplast transformation of recalcitrant alkaliphilic Bacillus sp. with methylated plasmid DNA and a developed hard agar regeneration medium. PLoS One 6: e28148.   DOI
12 Garti-Levi S, Hazan R, Kain J, Fujita M, Ben-Yehuda S. 2008. The FtsEX ABC transporter directs cellular differentiation in Bacillus subtilis. Mol. Microbiol. 69: 1018-1028.   DOI
13 Goosens VJ, Otto A, Glasner C, Monteferrante CC, van der Ploeg R, Hecker M, et al. 2013. Novel twin-arginine translocation pathway-dependent phenotypes of Bacillus subtilis unveiled by quantitative proteomics. J. Proteome Res. 12: 796-807.   DOI
14 Haldenwang WG. 1995. The sigma factors of Bacillus subtilis. Microbiol. Rev. 59: 1-30.
15 Hambraeus G, Karhumaa K, Rutberg B. 2002. A 5’ stemloop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology 148: 1795-1803.   DOI
16 Chen PT, Shaw JF, Chao YP, Ho TH, Yu SM. 2010. Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. J. Agric. Food Chem. 58: 5392-5399.   DOI
17 Chung YS, Breidt F, Dubnau D. 1998. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol. Microbiol. 29: 905-913.   DOI
18 Derre I, Rapoport G, Msadek T. 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol. Microbiol. 31: 117-131.   DOI
19 Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM. 2002. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J. Bacteriol. 184: 5661-5671.   DOI
20 Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE. 2010. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl. Environ. Microbiol. 76: 6370-6376.   DOI
21 Diao L, Dong Q, Xu Z, Yang S, Zhou J, Freudl R. 2012. Functional implementation of the posttranslational SecBSecA protein-targeting pathway in Bacillus subtilis. Appl. Environ. Microbiol. 78: 651-659.   DOI
22 Dong H, Zhang D. 2014. Current development in genetic engineering strategies of Bacillus species. Microb. Cell Fact. 13: 63.   DOI
23 Du Y, Shi WW, He YX, Yang YH, Zhou CZ, Chen Y. 2011. Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC. Biochem. J. 436: 283-289.   DOI
24 Bhavsar AP, Zhao X, Brown ED. 2001. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Appl. Environ. Microbiol. 67: 403-410.   DOI
25 Caspers M, Brockmeier U, Degering C, Eggert T, Freudl R. 2010. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide. Appl. Microbiol. Biotechnol. 86: 1877-1885.   DOI
26 Bolhuis A, Matzen A, Hyyrylainen HL, Kontinen VP, Meima R, Chapuis J, et al. 1999. Signal peptide peptidaseand ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J. Biol. Chem. 274: 24585-24592.   DOI
27 Bolhuis A, Venema G, Quax WJ, Bron S, van Dijl JM. 1999. Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J. Biol. Chem. 274: 24531-24538.   DOI
28 Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T. 2006. Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in gram-positive bacteria. J. Mol. Biol. 362: 393-402.   DOI
29 Chang S, Cohen SN. 1979. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet. 168: 111-115.   DOI
30 Chen J, Gai Y, Fu G, Zhou W, Zhang D, Wen J. 2014. Enhanced extracellular production of alpha-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnol. Lett. 37: 899-906.   DOI
31 Aiyar SE, Gourse RL, Ross W. 1998. Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. Proc. Natl. Acad. Sci. USA 95: 14652-14657.   DOI
32 Akopian D, Shen K , Zhang X, Shan SO. 2013. Signal recognition particle: an essential protein-targeting machine. Annu. Rev. Biochem. 82: 693-721.   DOI
33 Zhang D, Sweredoski MJ, Graham RL, Hess S, Shan SO. 2012. Novel proteomic tools reveal essential roles of SRP and importance of proper membrane protein biogenesis. Mol. Cell Proteomics 11: M111.011585.   DOI
34 Zanen G, Antelmann H, Westers H, Hecker M, van Dijl JM, Quax WJ. 2004. FlhF, the third signal recognition particle-GTPase of Bacillus subtilis, is dispensable for protein secretion. J. Bacteriol. 186: 5956-5960.   DOI
35 Zanen G, Houben EN, Meima R, Tjalsma H, Jongbloed JD, Westers H, et al. 2005. Signal peptide hydrophobicity is critical for early stages in protein export by Bacillus subtilis. FEBS J. 272: 4617-4630.   DOI
36 Zhang AL, Liu H, Yang MM, Gong YS, Chen H. 2007. Assay and characterization of a strong promoter element from B. subtilis. Biochem. Biophys. Res. Commun. 354: 90-95.   DOI
37 Bechhofer DH. 2009. Messenger RNA decay and maturation in Bacillus subtilis. Prog. Mol. Biol. Transl. Sci. 85: 231-273.   DOI
38 Albiniak AM, Matos CF, Branston SD, Freedman RB, Keshavarz-Moore E, Robinson C. 2013. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli. FEBS J. 280: 3810-3821.   DOI
39 Ano T, Kobayash iA, Shoda M. 1990. Transformation of Bacillus subtilis with the treatment by alkali cations. Biotechnol. Lett. 12: 99-104.   DOI
40 Bange G, Petzold G, Wild K, Sinning I. 2007. Expression, purification and preliminary crystallographic characterization of FlhF from Bacillus subtilis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63: 449-451.   DOI
41 Beck D, Vasisht N, Baglieri J, Monteferrante CG, van Dijl JM, Robinson C, Smith CJ. 2013. Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores. Biochim. Biophys. Acta 1833: 1811-1819.   DOI
42 Zimmer J, Li W, Rapoport TA. 2006. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364: 259-265.   DOI
43 Zhang GQ, Bao P, Zhang Y, Deng AH, Chen N, Wen TY. 2011. Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal. Biochem. 409: 130-137.   DOI
44 Zhang WW, Gao QR, Yang MM, Liu H, Wang D. 2012. Assay and characterization of an osmolarity inducible promoter newly isolated from Bacillus subtilis. Mol. Biol. Rep. 39: 7347-7353.   DOI
45 Zhang XZ, You C, Zhang YH. 2014. Transformation of Bacillus subtilis. Methods Mol. Biol. 1151: 95-101.   DOI
46 Zweers JC, Barak I, Becher D, Driessen AJ, Hecker M, Kontinen VP, et al. 2008. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. Microb. Cell Fact. 7: 10.   DOI
47 Wu SM, Feng C, Zhong J, Huan LD. 2011. Enhanced production of recombinant nattokinase in Bacillus subtilis by promoter optimization. World J. Microbiol. Biotechnol. 27: 99-106.   DOI
48 Xia Y, Zhao J, Chen H, Liu X, Wang Y, Tian F, et al. 2010. Extracellular secretion in Bacillus subtilis of a cytoplasmic thermostable beta-galactosidase from Geobacillus stearothermophilus. J. Dairy Sci. 93: 2838-2845.   DOI
49 Xue GP, Johnson JS, Dalrymple BP. 1999. High osmolarity improves the electro-transformation efficiency of the grampositive bacteria Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Methods 34: 183-191.   DOI
50 Yamane K, Bunai K, Kakeshita H. 2004. Protein traffic for secretion and related machinery of Bacillus subtilis. Biosci. Biotechnol. Biochem. 68: 2007-2023.   DOI
51 Wu SC, Yeung JC, Duan Y, Ye R, Szarka SJ, Habibi HR, Wong SL. 2002. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wallbound protease on antibody fragment production. Appl. Environ. Microbiol. 68: 3261-3269.   DOI
52 Yang C, Song C, Freudl R, Mulchandani A, Qiao C. 2010. Twin-arginine translocation of methyl parathion hydrolase in Bacillus subtilis. Environ. Sci. Technol. 44: 7607-7612.   DOI
53 Yang M, Zhang W, Ji S, Cao P, Chen Y, Zhao X. 2013. Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. PLoS One 8: e56321.   DOI
54 Wild K, Halic M, Sinning I, Beckmann R. 2004. SRP meets the ribosome. Nat. Struct. Mol. Biol. 11: 1049-1053.   DOI
55 Vellanoweth RL, Rabinowitz JC. 1992. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol. Microbiol. 6: 1105-1114.   DOI
56 Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S, et al. 2004. Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking Nand C-terminal domains in protein folding and secretion in Bacillus subtilis.J. Biol. Chem. 279: 19302-19314.   DOI
57 Walther TH, Gottselig C, Grage SL, Wolf M, Vargiu AV, Klein MJ, et al. 2013. Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell 152: 316-326.   DOI
58 Wang H, Ma Y, Hsieh YH, Yang H, Li M, Wang B, Tai PC. 2014. SecAAA trimer is fully functional as SecAA dimer in the membrane: existence of higher oligomers? Biochem. Biophys. Res. Commun. 447: 250-254.   DOI
59 Waschkau B, Waldeck J, Wieland S, Eichstadt R, Meinhardt F. 2008. Generation of readily transformable Bacillus licheniformis mutants. Appl. Microbiol. Biotechnol. 78: 181-188.   DOI
60 Wang J, Ai X, Mei H, Fu Y, Chen B, Yu Z, He J. 2013. High-throughput identification of promoters and screening of highly active promoter-5’-UTR DNA region with different characteristics from Bacillus thuringiensis. PLoS One 8: e62960.   DOI
61 Wenzel M, Muller A, Siemann-Herzberg M, Altenbuchner J. 2011. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-celldensity fermentation. Appl. Environ. Microbiol. 77: 6419-6425.   DOI
62 Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310.   DOI
63 Terra R, Stanley-Wall NR, Cao G, Lazazzera BA. 2012. Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J. Bacteriol. 194: 2781-2790.   DOI
64 Thuy Le AT, Schumann W. 2007. A novel cold-inducible expression system for Bacillus subtilis. Protein Expr. Purif. 53: 264-269.   DOI
65 Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, et al. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68: 207-233.   DOI
66 Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515-547.   DOI
67 Torres C, Galian C, Freiberg C, Fantino JR, Jault JM. 2009. The YheI/YheH heterodimer from Bacillus subtilis is a multidrug ABC transporter. Biochim. Biophys. Acta 1788: 615-622.   DOI
68 Tjalsma H, Bolhuis A, van Roosmalen ML, Wiegert T, Schumann W, Broekhuizen CP, et al. 1998. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev. 12: 2318-2331.   DOI
69 Tjalsma H, Stover AG, Driks A, Venema G, Bron S, van Dijl JM. 2000. Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J. Biol. Chem. 275: 25102-25108.   DOI
70 Tjalsma H, van den Dolder J, Meijer WJ, Venema G, Bron S, van Dijl JM. 1999. The plasmid-encoded signal peptidase SipP can functionally replace the major signal peptidases SipS and SipT of Bacillus subtilis. J. Bacteriol. 181: 2448-2454.
71 Pop O, Martin U, Abel C, Muller JP. 2002. The twinarginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous Tat translocation system. J. Biol. Chem. 277: 3268-3273.   DOI
72 Rocak S, Linder P. 2004. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5: 232-241.   DOI
73 Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27: 946-950.   DOI
74 Seo SW, Yang JS, Cho HS, Yang J, Kim SC, Park JM, et al. 2014. Predictive combinatorial design of mRNA translation initiation regions for systematic optimization of gene expression levels. Sci. Rep. 4: 4515.
75 Spizizen J. 1958. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad. Sci. USA 44: 1072-1078.   DOI
76 Seydlova G, Halada P, Fiser R, Toman O, Ulrych A, Svobodova J. 2012. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. J. Appl. Microbiol. 112: 765-774.   DOI
77 Shapova YA, Paetzel M. 2007. Crystallographic analysis of Bacillus subtilis CsaA. Acta Crystallogr. D Biol. Crystallogr. 63: 478-485.   DOI
78 Sharp JS, Bechhofer DH. 2003. Effect of translational signals on mRNA decay in Bacillus subtilis. J. Bacteriol. 185: 5372-5379.   DOI
79 Terpe K. 2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72: 211-222.   DOI
80 Paccez JD, Luiz WB, Sbrogio-Almeida ME, Ferreira RC, Schumann W, Ferreira LC. 2006. Stable episomal expression system under control of a stress inducible promoter enhances the immunogenicity of Bacillus subtilis as a vector for antigen delivery. Vaccine 24: 2935-2943.   DOI
81 Papanikou E, Karamanou S, Baud C, Frank M, Sianidis G, Keramisanou D, et al. 2005. Identification of the preprotein binding domain of SecA. J. Biol. Chem. 280: 43209-43217.   DOI
82 Peterson JH, Woolhead CA, Bernstein HD. 2003. Basic amino acids in a distinct subset of signal peptides promote interaction with the signal recognition particle. J. Biol. Chem. 278: 46155-46162.   DOI
83 Phan TT, Nguyen HD, Schumann W. 2010. Establishment of a simple and rapid method to screen for strong promoters in Bacillus subtilis. Protein Expr. Purif. 71: 174-178.   DOI
84 Pittelkow M, Tschapek B, Smits SH, Schmitt L, Bremer E. 2011. The crystal structure of the substrate-binding protein OpuBC from Bacillus subtilis in complex with choline. J. Mol. Biol. 411: 53-67.   DOI
85 Phan TT, Nguyen HD, Schumann W. 2012. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J. Biotechnol. 157: 167-172.   DOI
86 Phan TT, Nguyen HD, Schumann W. 2013. Construction of a 5’-controllable stabilizing element (CoSE) for over-production of heterologous proteins at high levels in Bacillus subtilis. J. Biotechnol. 168: 32-39.   DOI
87 Phan TT, Schumann W. 2007. Development of a glycineinducible expression system for Bacillus subtilis. J. Biotechnol. 128: 486-499.   DOI
88 Pohl S, Harwood CR. 2010. Heterologous protein secretion by Bacillus species from the cradle to the grave. Adv. Appl. Microbiol. 73: 1-25.   DOI
89 Moran CP Jr, Johnson WC, Losick R. 1982. Close contacts between sigma 37-RNA polymerase and a Bacillus subtilis chromosomal promoter. J. Mol. Biol. 162: 709-713.   DOI
90 Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, et al. 2008. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res. 15: 73-81.   DOI
91 Mulder KC, Bandola J, Schumann W. 2013. Construction of an artificial secYEG operon allowing high level secretion of alpha-amylase. Protein Expr. Purif. 89: 92-96.   DOI
92 Muller JP, Ozegowski J, Vettermann S, Swaving J, Van Wely KH, Driessen AJ. 2000. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem. J. 348: 367-373.   DOI
93 Ogura M, Tsukahara K, Hayashi K, Tanaka T. 2007. The Bacillus subtilis NatK-NatR two-component system regulates expression of the natAB operon encoding an ABC transporter for sodium ion extrusion. Microbiology 153: 667-675.   DOI
94 Na D, Lee D. 2010. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26: 2633-2634.   DOI
95 Nam SE, Paetzel M. 2013. Structure of signal peptide peptidase A with C-termini bound in the active sites: insights into specificity, self-processing, and regulation. Biochemistry 52: 8811-8822.   DOI
96 Nijland R, Kuipers OP. 2008. Optimization of protein secretion by Bacillus subtilis. Recent Pat. Biotechnol. 2: 79-87.   DOI
97 Ohtani N, Sato M, Tomita M, Itaya M. 2008. Restriction on conjugational transfer of pLS20 in Bacillus subtilis 168. Biosci. Biotechnol. Biochem. 72: 2472-2475.   DOI
98 Liu R, Zuo Z, Xu Y, Song C, Jiang H, Qiao C, et al. 2014. Twin-arginine signal peptide of Bacillus subtilis YwbN can direct Tat-dependent secretion of methyl parathion hydrolase. J. Agric. Food Chem. 62: 2913-2918.   DOI
99 Liu SL, Du K. 2012. Enhanced expression of an endoglucanase in Bacillus subtilis by using the sucroseinducible sacB promoter and improved properties of the recombinant enzyme. Protein Expr. Purif. 83: 164-168.   DOI
100 Lu YP, Zhang C, Lv FX, Bie XM, Lu ZX. 2012. Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis. Lett. Appl. Microbiol. 55: 9-14.   DOI
101 Lycklama ANJA, Driessen AJ. 2012. The bacterial Sectranslocase: structure and mechanism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367: 1016-1028.   DOI
102 Ming YM, Wei ZW, Lin CY, Sheng GY. 2010. Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb. Cell Fact. 9: 55.   DOI
103 Manabe K, Kageyama Y, Morimoto T, Ozawa T, Sawada K, Endo K, et al. 2011. Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl. Environ. Microbiol. 77: 8370-8381.   DOI
104 Manabe K, Kageyama Y, Morimoto T, Shimizu E, Takahashi H, Kanaya S, et al. 2013. Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. Microb. Cell Fact. 12: 18.   DOI
105 Miethke M, Hecker M, Gerth U. 2006. Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J. Bacteriol. 188: 4610-4619.   DOI
106 Kudva R, Denks K, Kuhn P, Vogt A, Muller M, Koch HG. 2013. Protein translocation across the inner membrane of gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res. Microbiol. 164: 505-534.   DOI
107 Kusaoke H, Hayashi Y, Kadowaki Y, Kimoto H. 1989. Optimum conditions for electric pulse-mediated gene-transfer to Bacillus subtilis cells. Agric. Biol. Chem. 53: 2441-2446.   DOI
108 Lee SJ, Pan JG, Park SH, Choi SK. 2010. Development of a stationary phase-specific autoinducible expression system in Bacillus subtilis. J. Biotechnol. 149: 16-20.   DOI
109 Li M, Wong SL. 1992. Cloning and characterization of the groESL operon from Bacillus subtilis. J. Bacteriol. 174: 3981-3992.   DOI
110 Li W, Li HX, Ji SY, Li S, Gong YS, Yang MM, Chen YL. 2007. Characterization of two temperature-inducible promoters newly isolated from B. subtilis. Biochem. Biophys Res. Commun. 358: 1148-1153.   DOI
111 Li W, Zhou X, Lu P. 2004. Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res. Microbiol. 155: 605-610.   DOI
112 Linde D, Volkmer-Engert R, Schreiber S, Muller JP. 2003. Interaction of the Bacillus subtilis chaperone CsaA with the secretory protein YvaY. FEMS Microbiol. Lett. 226: 93-100.   DOI
113 Ling LF, Zi RX, Wei FL, Jiang BS, Ping L, Chun XH. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12.   DOI
114 Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, et al. 2013. Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl. Microbiol. Biotechnol. 97: 6113-6127.   DOI
115 Kempf G, Wild K, Sinning I. 2014. Structure of the complete bacterial SRP Alu domain. Nucleic Acids Res. 42: 12284-12294.   DOI
116 Kim JH, Lee BR, Lee YP. 2011. Secretory overproduction of the aminopeptidase from Bacillus licheniformis by a novel hybrid promoter in Bacillus subtilis. World J. Microbiol. Biotechnol. 27: 2747-2751.   DOI
117 Kock H, Gerth U, Hecker M. 2004. The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J. Bacteriol. 186: 5856-5864.   DOI
118 Kouwen TR, Dubois JY, Freudl R, Quax WJ, van Dijl JM. 2008. Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis. Appl. Environ. Microbiol. 74: 7536-7545.   DOI
119 Kolkman MA, van der Ploeg R, Bertels M, van Dijk M, van der Laan J, van Dijl JM, Ferrari E. 2008. The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway. Appl. Environ. Microbiol. 74: 7507-7513.   DOI
120 Kontinen VP, Sarvas M. 1993. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol. Microbiol. 8: 727-737.   DOI
121 Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, et al. 2013. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J. Proteome Res. 12: 4101-4110.   DOI
122 Krishnappa L, Monteferrante CG, Neef J, Dreisbach A, van Dijl JM. 2014. Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis. Appl. Environ. Microbiol. 80: 1463-1468.   DOI
123 Hyyrylainen HL, Marciniak BC, Dahncke K, Pietiainen M, Courtin P, Vitikainen M, et al. 2010. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis. Mol. Microbiol. 77: 108-127.   DOI
124 Hyyrylainen HL, Sarvas M, Kontinen VP. 2005. Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl. Microbiol. Biotechnol. 67: 389-396.   DOI
125 Kakeshita H, Kageyama Y, Endo K, Tohata M, Ara K, Ozaki K, Nakamura K. 2011. Secretion of biologicallyactive human interferon-beta by Bacillus subtilis. Biotechnol. Lett. 33: 1847-1852.   DOI
126 Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM. 2004. Two minimal Tat translocases in Bacillus. Mol. Microbiol. 54: 1319-1325.   DOI
127 Jurgen B, Schweder T, Hecker M. 1998. The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site. Mol. Gen. Genet. 258: 538-545.   DOI
128 Kakeshita H, Kageyama Y, Ara K, Ozaki K, Nakamura K. 2010. Enhanced extracellular production of heterologous proteins in Bacillus subtilis b y deleting t h e C-terminal region of the SecA secretory machinery. Mol. Biotechnol. 46: 250-257.   DOI
129 Kang HK, Jang JH, Shim JH, Park JT, Kim YW, Park KH. 2010. Efficient constitutive expression of thermostable 4- alpha-glucanotransferase in Bacillus subtilis using dual promoters. World J. Microbiol. Biotechnol. 26: 1915-1918.   DOI
130 Kang Z, Yang S, Du G, Chen J. 2014. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J. Ind. Microbiol. Biotechnol. 41: 1599-1607.   DOI
131 Helmann JD. 1995. Compilation and analysis of Bacillus subtilis sigma(a)-dependent promoter sequences - evidence for extended contact between RNA-polymerase and upstream promoter DNA. Nucleic Acids Res. 23: 2351-2360.   DOI
132 Heravi KM, Wenzel M, Altenbuchner J. 2011. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb. Cell Fact. 10: 83.   DOI