• 제목/요약/키워드: signal pathways

검색결과 566건 처리시간 0.028초

Signal Transduction Events Elicited by Natural Products: Role of MAPK and Caspase Pathways in Homeostatic Response and Induction of Apoptosis

  • Kong, Ah-Ng Tony;Yu, Rong;Chen, Chi;Mandlekar, Sandhya;Primiano, Thomas
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2000
  • Many natural products elicit diverse pharmacological effects. Using two classes of potential chemopreventive compounds, the phenolic compounds and the isothiocyanates, we review the potential utility of two signaling events, the mitogen-activated protein kinases (MAPKs) and the ICE/Ced-3 proteases (caspases) stimulated by these agents in mammalian cell lines. Studies with phenolic antioxidants (BHA, tBHQ), and natural products (flavonoids; EGCG, ECG, and isothiocyanates; PEITC, sulforaphane), provided important insights into the signaling pathways induced by these compounds. At low concentrations, these chemicals may activate the MAPK (ERK2, JNK1, p38) leading to gene expression of survival genes (c-Fos, c-Jun) and defensive genes (Phase II detoxifying enzymes; GST, QR) resulting in survival and protective mechanisms (homeostasis response). Increasing the concentrations of these compounds will additionally activate the caspase pathway, leading to apoptosis (potential cytotoxicity). Further increment to suprapharmacological concentrations will lead to nonspecific necrotic cell death. The wider and narrow concentration ranges between the activation of MAPK/gene induction and caspases/cell death exhibited by phenolic compounds and isothiocyanates, respectively, in mammalian cells, may reflect their respective therapeutic windows in vivo. Consequently, the studies of signaling pathways elicited by natural products will advance our understanding of their efficacy and safety, of which many man become important therapeuitc drugs of the future.

  • PDF

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

구강 편평세포암종에서의 암줄기세포 이론과 최신 지견 (Cancer stem cell theory and update in oral squamous cell carcinoma)

  • 김덕훈;윤준용;이주현;김성민;명훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권2호
    • /
    • pp.97-108
    • /
    • 2011
  • Cancer stem cells have stem cell-like features, such as the ability for self-renewal and differentiation but show unlimited growth because they have the lost normal regulation of cell growth. Cancer stem cells and normal stem cells have similar features. They show high motility, diversity of progeny, robust proliferative potential, association with blood vessels, immature expression profiles, nestin expression, epidermal growth factor (EGF)-receptor expression, phosphatase and tensin homolog (PTEN) expression, hedgehog pathway activity, telomerase activity, and Wnt pathway activity. On the other hand, with cancer cells, some of these signaling pathways are abnormally modified. In 1875, Cohnheim suggested the concept of cancer stem cells. Recently, evidence for the existence of cancer stem cells was identified. In 1994, the cancer stem cells' specific cell surface marker for leukemia was identified. Since then, other specific cell surface markers for cancer stem cells in solid tumors (e.g. breast and colon cancer) have been identified. In oral cancer, studies on cancer stem cells have been performed mainly with squamous cell carcinomas. Oral cancer specific cell surface markers, which are genes strongly expressed in oral cancer and cancer stem cell specific side populations, have been identified. Cancer stem cells are resistant to radiotherapy and chemotherapy. Therefore, to eliminate malignant tumors efficiently and reduce the recurrence rate, therapy targeting cancer stem cells needs to be performed. Currently, studies targeting the cancer stem cells' specific signaling pathways, telomerase and tumor vasculatures are being done.

Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogen-activated protein kinase pathways

  • Qin, Na;Yang, Wei;Feng, Dongxu;Wang, Xinwen;Qi, Muyao;Du, Tianxin;Sun, Hongzhi;Wu, Shufang
    • Journal of Ginseng Research
    • /
    • 제40권3호
    • /
    • pp.285-291
    • /
    • 2016
  • Background: Ginsenosides have been shown to exert beneficial pharmacological effects on the central nervous, cardiovascular, and endocrine systems. We sought to determine whether total ginsenosides (TG) inhibit monocrotaline (MCT)-induced pulmonary hypertension and to elucidate the underlying mechanism. Methods: MCT-intoxicated rats were treated with gradient doses of TG, with or without $N^G$-nitro-$\small{L}$-arginine methyl ester. The levels of molecules involving the regulation of nitric oxide and mitogen-activated protein kinase pathways were determined. Results: TG ameliorated MCT-induced pulmonary hypertension in a dose-dependent manner, as assessed by the right ventricular systolic pressure, the right ventricular hypertrophy index, and pulmonary arterial remodeling. Furthermore, TG increased the levels of pulmonary nitric oxide, endothelial nitric oxide synthase, and cyclic guanosine monophosphate. Lastly, TG increased mitogen-activated protein kinase phosphatase-1 expression and promoted the dephosphorylation of extracellular signal-regulated protein kinases 1/2, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase 1/2. Conclusion: TG attenuates MCT-induced pulmonary hypertension, which may involve in part the regulation of nitric oxide and mitogen-activated protein kinase pathways.

A proteomic approach reveals the differential protein expression in Drosophila melanogaster treated with red ginseng extract (Panax ginseng)

  • Liu, Qing-Xiu;Zhang, Wei;Wang, Jia;Hou, Wei;Wang, Ying-Ping
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Background: Red ginseng is a popularly used traditional medicine with antiaging effects in Asian countries. The present study aimed to explore the changes in protein expression underlying the mechanisms of life span extension and antiaging caused by red ginseng extract (RGE) in Drosophila melanogaster. Methods: A proteomic approach of two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to identify the differential abundance of possible target proteins of RGE in D. melanogaster. The reliability of the 2-DE results was confirmed via Western blotting to measure the expression levels of selected proteins. Proteins altered at the expression level after RGE treatment (1 mg/mL) were identified by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry and by searching against the National Center for Biotechnology nonredundant and Uniprot protein databases. The differentially expressed proteins were analyzed using bioinformatics methods. Results: The average survival life span of D. melanogaster was significantly extended by 12.60% with RGE treatment (1 mg/mL) compared to untreated flies. This followed increased superoxide dismutase level and decreased methane dicarboxylic aldehyde content. Based on the searching strategy, 23 differentially expressed proteins were identified (16 up-regulated and 7 down-regulated) in the RGE-treated D. melanogaster. Transduction pathways were identified using the Kyoto Encyclopedia of Genes and Genomes database, and included the hippo and oxidative phosphorylation pathways that play important roles in life span extension and antiaging process of D. melanogaster. Conclusion: Treatment with RGE in D. melanogaster demonstrated that mechanisms of life span extension and antiaging are regulated by multiple factors and complicated signal pathways.

Functional characterization of gibberellin signaling-related genes in Panax ginseng

  • Kim, Jinsoo;Shin, Woo-Ri;Kim, Yang-Hoon;Shim, Donghwan;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.148-155
    • /
    • 2021
  • Gibberellins (GAs) are essential phytohormones for plant growth that influence developmental processes and crop yields. Recent functional genomic analyses of model plants have yielded good characterizations of the canonical GA signaling pathways and related genes. Although Panax ginseng has long been considered to have economic and medicinal importance, functional genomic studies of the GA signaling pathways in this crucial perennial herb plant have been rarely conducted. Here, we identified and performed functional analysis of the GA signaling-related genes, including PgGID1s, PgSLY1s, and PgRGAs. We confirmed that the physiological role of GA signaling components in P. ginseng was evolutionarily conserved. In addition, the important functional domains and amino acid residues for protein interactions among active GA, GID1, SCFSLY1, and RGA were also functionally conserved. Prediction and comparison of crystallographic structural similarities between PgGID1s and AtGID1a supported their function as GA receptors. Moreover, the subcellular localization and GA-dependent promotion of DELLA degradation in P. ginseng was similar to the canonical GA signaling pathways in other plants. Finally, we found that overexpression of PgRGA2 and PgSLY1-1 was sufficient to complement the GA-related phenotypes of atgid1a/c double- and rga quintuple-mutants, respectively. This critical information for these GA signaling genes has the potential to facilitate future genetic engineering and breeding of P. ginseng for increased crop yield and production of useful substances.

Biased Dopamine D2 Receptors Exhibit Distinct Intracellular Trafficking Properties and ERK Activation in Different Subcellular Domains

  • Shujie Wang;Lulu Peng;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.56-64
    • /
    • 2024
  • Biased signaling or functional selectivity refers to the ability of an agonist or receptor to selectively activate a subset of transducers such as G protein and arrestin in the case of G protein-coupled receptors (GPCRs). Although signaling through arrestin has been reported from various GPCRs, only a few studies have examined side-by-side how it differs from signaling via G protein. In this study, two signaling pathways were compared using dopamine D2 receptor (D2R) mutants engineered via the evolutionary tracer method to selectively transduce signals through G protein or arrestin (D2G and D2Arr, respectively). D2G mediated the inhibition of cAMP production and ERK activation in the cytoplasm. D2Arr, in contrast, mediated receptor endocytosis accompanied by arrestin ubiquitination and ERK activation in the nucleus as well as in the cytoplasm. D2Arr-mediated ERK activation occurred in a manner dependent on arrestin3 but not arrestin2, accompanied by the nuclear translocation of arrestin3 via importin1. D2R-mediated ERK activation, which occurred in both the cytosol and nucleus, was limited to the cytosol when cellular arrestin3 was depleted. This finding supports the results obtained with D2Arr and D2G. Taken together, these observations indicate that biased signal transduction pathways activate distinct downstream mechanisms and that the subcellular regions in which they occur could be different when the same effectors are involved. These findings broaden our understanding on the relation between biased receptors and the corresponding downstream signaling, which is critical for elucidating the functional roles of biased pathways.

Regulatory Effects of Exercise and Dietary Intervention in Mitogen Activated Protein Kinase Signaling Pathways in Rats

  • Lee, Jong-Sam;Kwon, Young-Woo;Lee, Jang-Kyu;Park, Jeong-Bae;Kim, Chang-Hwan;Kim, Hyo-Sik;Kim, Chang-Keun
    • Nutritional Sciences
    • /
    • 제7권1호
    • /
    • pp.23-30
    • /
    • 2004
  • As a central component of a novel protein kinase cascade, the activation of the mitogen-activated protein (MAP) kinase cascade has attracted considerable attention. We sought to determine the effect of exercise and diet on the activation of the extracellular-signal regulated protein kinase (ERK) 1/2 and the p38 MAP kinase pathways in rat soleus muscle. Forty-eight Sprague-Dawley rats were assigned to one of two dietary conditions: high-carbohydrate (CHO) or high-fat (FAT). Animals having each dietary condition were further divided into one of three subgroups: a sedentary control group that did not exercise (NT), a group that performed 8 weeks of treadmill running and was sacrificed 48 h after their final treadmill run (CE), and a group that was sacrificed immediately after their final routine exercise training (AE). A high-fat diet did not have any significant effect on phosphorylated and total forms of ERK 1/2 or p38 MAP kinase. In chronically trained muscle that was taken 48 h after the last training, phosphorylated ERK 1/2 significantly increased only in the FAT but not in the CHO groups. In the case of total ERK 1/2, it increased significantly for both groups. In contrast, both phosphorylated and total forms of p38 MAP kinase decreased markedly compared to sedentary muscle. In muscle that was taken immediately after a last bout of exercise, phosphorylated ERK 1/2 increased in both groups but statistical significance was seen only in the CHO group. Total ERK 1/2 in acutely stimulated muscle increased only in the CHO-AE group even though the degree was much lower than the phosphorylated status. Muscle that was taken immediately after the routine training increased in phosphorylation status of p38 MAP kinase for both dietary conditions. However, statistical significance was seen only in the CHO group owing to a large variation with FAT. In conclusion, a high-fat diet per se did not have any notable effect versus a high-carbohydrate diet on MAP kinase pathways. However, when diet (either CHO or FAT) was combined with exercise and/or training, there was differentiated protein expression in MAP kinase pathways. This indicates MAP kinase pathways have diverse control mechanisms in slow-twitch fibers.

유식물 발달과정에서 브라시노스테로이드와 앱시스산 신호전달의 상호작용 연구 (Interplay between Brassinosteroid and ABA signaling during early seedling development)

  • 김혜민;홍정의;조용구;강권규;류호진
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.264-270
    • /
    • 2017
  • 식물의 유일한 활성 스테로이드 호르몬인 Brassinosteroid (BR)는 다양한 내재적 또는 외부 신호 전달 경로와의 통합적인 결합을 통해 식물의 생장 및 발달 과정에서 중요한 기능을 하는 것으로 알려져 있다. 최근 식물학 연구들은 종자의 발아와 초기 발달과정에서 BR과 ABA 사이의 필수적인 상호작용 메커니즘이 존재하고 있음을 보고하고 있다. 하지만 이들 두 호르몬의 중요한 신호전달 상호작용에 대한 분자 메커니즘은 거의 알려지지 않았다. 식물의 초기 발달과정에서 BR에 의해 매개되는 ABA 신호전달과의 기능학적, 생물학적 상호작용 네트워크를 이해하기 위해 Agilent Arabidopsis $4{\times}44K$ 올리고 칩을 사용하여 비교 전사체 분석을 수행하였다. ABA에 반응하지 않는 bes1-D 돌연변이체에서의 ABA 처리에 따른 다양한 유전자의 발현 패턴을 야생형 식물과 비교 분석하였다. 그 결과 발현의 변화가 발생하는 유전자(DEGs) 2,353개를 확인하였다. GO 분석을 통해 ABA 신호전달 및 대사에 관여하는 유전자들이 BR 신호전달 경로에 의해 하향 조절되는 것으로 확인되었다. 뿐만 아니라, BR 신호전달 경로는 다양한 비생물학적/생물학적 스트레스, 오옥신 및 ROS 등 다양한 신호전달 체계와 밀접하게 연관되어 있음을 확인하였다. 본 연구를 통해 BR 신호전달의 활성화는 ABA 신호전달에 관여하는 다양한 유전자들의 발현을 억제함을 확인하였다. 또한 본 연구는 다양한 신호 경로 사이의 상호작용이 다양한 환경요인에 대한 식물의 적응 반응에 중요하게 작용할 수 있음을 보여주고 있다.

식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해 (Understanding of Drought Stress Signaling Network in Plants)

  • 이재훈
    • 생명과학회지
    • /
    • 제28권3호
    • /
    • pp.376-387
    • /
    • 2018
  • 식물이 접하는 다양한 환경 스트레스(고온, 저온, 냉해, 고염, 가뭄 등) 중에서 물부족(가뭄) 스트레스는 식물의 생장 및 생산성을 저해하는 가장 주요한 요인으로 보고되어 왔다. 그러므로, 물부족 스트레스에 대한 식물의 반응 기작을 명확히 이해하는 것은 물부족 스트레스 저항성이 증가된 유용 작물 개발에 적용될 수 있을 것으로 기대되며, 그 결과 작물 재배 가능 지역의 확대에 기여할 수 있을 것으로 생각된다. 식물의 물부족 스트레스 신호 과정은 크게 식물 호르몬인 앱시스산 의존적인 과정과 비의존적인 과정으로 분류되며, 각각 AREB/ABF, DREB2 전사 조절 인자가 주요한 전사 조절 인자로 참여하여 하위 단계 반응 유전자의 발현 조절에 참여한다. 이러한 AREB/ABF, DREB2 의존적인 regulon에 대한 연구를 통해 물부족 스트레스 신호 과정 중 전사 수준의 조절에 대한 규명이 활발히 이루어지고 있다. 해당 신호 과정에는 전사 수준의 조절뿐만 아니라 인산화, 유비퀴틴화와 같은 번역 후 변형 과정 및 염색질 변형에 의해 매개되는 후성유전학적 조절도 연관되어 있다. 본 총설에서는 현재까지 보고된 물부족 스트레스 신호 전달 과정을, 이와 관련되어 보고된 다양한 신호 전달 단백질들의 기능과 연계시켜 알아보고자 한다. 이러한 물부족 스트레스 신호 전달 과정에 대한 명확한 이해는 향후 유용 내건성 작물 개발을 위한 이론적 기반 구축에 도움이 될 수 있을 것이라 생각된다.