DOI QR코드

DOI QR Code

Biased Dopamine D2 Receptors Exhibit Distinct Intracellular Trafficking Properties and ERK Activation in Different Subcellular Domains

  • Shujie Wang (Department of Pharmacology, College of Pharmacy, Chonnam National University) ;
  • Lulu Peng (Department of Pharmacology, College of Pharmacy, Chonnam National University) ;
  • Kyeong-Man Kim (Department of Pharmacology, College of Pharmacy, Chonnam National University)
  • Received : 2023.02.19
  • Accepted : 2023.06.27
  • Published : 2024.01.01

Abstract

Biased signaling or functional selectivity refers to the ability of an agonist or receptor to selectively activate a subset of transducers such as G protein and arrestin in the case of G protein-coupled receptors (GPCRs). Although signaling through arrestin has been reported from various GPCRs, only a few studies have examined side-by-side how it differs from signaling via G protein. In this study, two signaling pathways were compared using dopamine D2 receptor (D2R) mutants engineered via the evolutionary tracer method to selectively transduce signals through G protein or arrestin (D2G and D2Arr, respectively). D2G mediated the inhibition of cAMP production and ERK activation in the cytoplasm. D2Arr, in contrast, mediated receptor endocytosis accompanied by arrestin ubiquitination and ERK activation in the nucleus as well as in the cytoplasm. D2Arr-mediated ERK activation occurred in a manner dependent on arrestin3 but not arrestin2, accompanied by the nuclear translocation of arrestin3 via importin1. D2R-mediated ERK activation, which occurred in both the cytosol and nucleus, was limited to the cytosol when cellular arrestin3 was depleted. This finding supports the results obtained with D2Arr and D2G. Taken together, these observations indicate that biased signal transduction pathways activate distinct downstream mechanisms and that the subcellular regions in which they occur could be different when the same effectors are involved. These findings broaden our understanding on the relation between biased receptors and the corresponding downstream signaling, which is critical for elucidating the functional roles of biased pathways.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (KRF-2020R1I1A3062151); Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN21C1076).

References

  1. Adachi, M., Fukuda, M. and Nishida, E. (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J. Cell Biol. 148, 849-856. https://doi.org/10.1083/jcb.148.5.849
  2. Ahn, S., Shenoy, S. K., Wei, H. and Lefkowitz, R. J. (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279, 35518-35525. https://doi.org/10.1074/jbc.M405878200
  3. Alvarez-Curto, E., Inoue, A., Jenkins, L., Raihan, S. Z., Prihandoko, R., Tobin, A. B. and Milligan, G. (2016) Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signaling. J. Biol. Chem. 291, 27147-27159. https://doi.org/10.1074/jbc.M116.754887
  4. Benovic, J. L., Kuhn, H., Weyand, I., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1987) Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. U. S. A. 84, 8879-8882. https://doi.org/10.1073/pnas.84.24.8879
  5. Beom, S., Cheong, D., Torres, G., Caron, M. G. and Kim, K. M. (2004) Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J. Biol. Chem. 279, 28304-28314. https://doi.org/10.1074/jbc.M403899200
  6. Bonifazi, A., Yano, H., Guerrero, A. M., Kumar, V., Hoffman, A. F., Lupica, C. R., Shi, L. and Newman, A. H. (2019) Novel and potent dopamine D(2) receptor Go-protein biased agonists. ACS Pharmacol. Transl. Sci. 2, 52-65. https://doi.org/10.1021/acsptsci.8b00060
  7. Burns, D. L. (1988) Subunit structure and enzymic activity of pertussis toxin. Microbiol. Sci. 5, 285-287.
  8. Chen, X., Mccorvy, J. D., Fischer, M. G., Butler, K. V., Shen, Y., Roth, B. L. and Jin, J. (2016) Discovery of G protein-biased D2 dopamine receptor partial agonists. J. Med. Chem. 59, 10601-10618. https://doi.org/10.1021/acs.jmedchem.6b01208
  9. Cho, D., Zheng, M., Min, C., Ma, L., Kurose, H., Park, J. H. and Kim, K. M. (2010) Agonist-induced endocytosis and receptor phosphorylation mediate resensitization of dopamine D(2) receptors. Mol. Endocrinol. 24, 574-586. https://doi.org/10.1210/me.2009-0369
  10. Davis, S., Vanhoutte, P., Pages, C., Caboche, J. and Laroche, S. (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiationdependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563-4572. https://doi.org/10.1523/JNEUROSCI.20-12-04563.2000
  11. Donthamsetti, P., Gallo, E. F., Buck, D. C., Stahl, E. L., Zhu, Y., Lane, J. R., Bohn, L. M., Neve, K. A., Kellendonk, C. and Javitch, J. A. (2020) Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol. Psychiatry 25, 2086-2100. https://doi.org/10.1038/s41380-018-0212-4
  12. Ferguson, S. S., Downey, W. E., 3rd, Colapietro, A. M., Barak, L. S., Menard, L. and Caron, M. G. (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363-366. https://doi.org/10.1126/science.271.5247.363
  13. Grundmann, M., Merten, N., Malfacini, D., Inoue, A., Preis, P., Simon, K., Ruttiger, N., Ziegler, N., Benkel, T., Schmitt, N. K., Ishida, S., Muller, I., Reher, R., Kawakami, K., Inoue, A., Rick, U., Kuhl, T., Imhof, D., Aoki, J., Konig, G. M., Hoffmann, C., Gomeza, J., Wess, J. and Kostenis, E. (2018) Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun. 9, 341.
  14. Gurevich, V. V. and Gurevich, E. V. (2020) Biased GPCR signaling: possible mechanisms and inherent limitations. Pharmacol. Ther. 211, 107540.
  15. Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S. and Caron, M. G. (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem. 276, 37409-37414. https://doi.org/10.1074/jbc.M106728200
  16. Kim, M. L., Sorg, I. and Arrieumerlou, C. (2011) Endocytosis-independent function of clathrin heavy chain in the control of basal NF-kappaB activation. PLoS One 6, e17158.
  17. Lan, H., Liu, Y., Bell, M. I., Gurevich, V. V. and Neve, K. A. (2009) A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol. Pharmacol. 75, 113-123. https://doi.org/10.1124/mol.108.050534
  18. Lichtarge, O., Bourne, H. R. and Cohen, F. E. (1996) An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342-358. https://doi.org/10.1006/jmbi.1996.0167
  19. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248, 1547-1550. https://doi.org/10.1126/science.2163110
  20. Luttrell, L. M., Ferguson, S. S., Daaka, Y., Miller, W. E., Maudsley, S., Della Rocca, G. J., Lin, F., Kawakatsu, H., Owada, K., Luttrell, D. K., Caron, M. G. and Lefkowitz, R. J. (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283, 655-661. https://doi.org/10.1126/science.283.5402.655
  21. Maik-Rachline, G., Hacohen-Lev-Ran, A. and Seger, R. (2019) Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int. J. Mol. Sci. 20, 1194.
  22. Mccorvy, J. D., Butler, K. V., Kelly, B., Rechsteiner, K., Karpiak, J., Betz, R. M., Kormos, B. L., Shoichet, B. K., Dror, R. O., Jin, J. and Roth, B. L. (2018) Structure-inspired design of beta-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol. 14, 126-134. https://doi.org/10.1038/nchembio.2527
  23. Min, X., Sun, N., Wang, S., Zhang, X. and Kim, K. M. (2023) Sequestration of Gbetagamma by deubiquitinated arrestins into the nucleus as a novel desensitization mechanism of G protein-coupled receptors. Cell Commun. Signal. 21, 11.
  24. Min, X., Zhang, X., Sun, N., Acharya, S. and Kim, K. M. (2019) Mdm2-mediated ubiquitination of PKCbetaII in the nucleus mediates clathrin-mediated endocytic activity. Biochem. Pharmacol. 170, 113675.
  25. Oakley, R. H., Laporte, S. A., Holt, J. A., Caron, M. G. and Barak, L. S. (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J. Biol. Chem. 275, 17201-17210. https://doi.org/10.1074/jbc.M910348199
  26. Peterson, S. M., Pack, T. F. and Caron, M. G. (2015a) Receptor, ligand and transducer contributions to dopamine D2 receptor functional selectivity. PLoS One 10, e0141637.
  27. Peterson, S. M., Pack, T. F., Wilkins, A. D., Urs, N. M., Urban, D. J., Bass, C. E., Lichtarge, O. and Caron, M. G. (2015b) Elucidation of G-protein and beta-arrestin functional selectivity at the dopamine D2 receptor. Proc. Natl. Acad. Sci. U. S. A. 112, 7097-7102. https://doi.org/10.1073/pnas.1502742112
  28. Quan, W., Kim, J. H., Albert, P. R., Choi, H. and Kim, K. M. (2008) Roles of G protein and beta-arrestin in dopamine D2 receptor-mediated ERK activation. Biochem. Biophys. Res. Commun. 377, 705-709. https://doi.org/10.1016/j.bbrc.2008.10.044
  29. Reiter, E., Ahn, S., Shukla, A. K. and Lefkowitz, R. J. (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52, 179-197. https://doi.org/10.1146/annurev.pharmtox.010909.105800
  30. Sanchez-Soto, M., Verma, R. K., Willette, B. K. A., Gonye, E. C., Moore, A. M., Moritz, A. E., Boateng, C. A., Yano, H., Free, R. B., Shi, L. and Sibley, D. R. (2020) A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Sci. Signal. 13, eaaw5885.
  31. Shenoy, S. K., Barak, L. S., Xiao, K., Ahn, S., Berthouze, M., Shukla, A. K., Luttrell, L. M. and Lefkowitz, R. J. (2007) Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J. Biol. Chem. 282, 29549-29562. https://doi.org/10.1074/jbc.M700852200
  32. Shenoy, S. K., Mcdonald, P. H., Kohout, T. A. and Lefkowitz, R. J. (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294, 1307-1313. https://doi.org/10.1126/science.1063866
  33. Soergel, D. G., Subach, R. A., Burnham, N., Lark, M. W., James, I. E., Sadler, B. M., Skobieranda, F., Violin, J. D. and Webster, L. R. (2014) Biased agonism of the mu-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 155, 1829-1835. https://doi.org/10.1016/j.pain.2014.06.011
  34. Tohgo, A., Choy, E. W., Gesty-Palmer, D., Pierce, K. L., Laporte, S., Oakley, R. H., Caron, M. G., Lefkowitz, R. J. and Luttrell, L. M. (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem. 278, 6258-6267. https://doi.org/10.1074/jbc.M212231200
  35. Tohgo, A., Pierce, K. L., Choy, E. W., Lefkowitz, R. J. and Luttrell, L. M. (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem. 277, 9429-9436. https://doi.org/10.1074/jbc.M106457200
  36. Urban, J. D., Clarke, W. P., Von Zastrow, M., Nichols, D. E., Kobilka, B., Weinstein, H., Javitch, J. A., Roth, B. L., Christopoulos, A., Sexton, P. M., Miller, K. J., Spedding, M. and Mailman, R. B. (2007) Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1-13. https://doi.org/10.1124/jpet.106.104463
  37. Violin, J. D., Crombie, A. L., Soergel, D. G. and Lark, M. W. (2014) Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol. Sci. 35, 308-316. https://doi.org/10.1016/j.tips.2014.04.007
  38. Violin, J. D., Dewire, S. M., Yamashita, D., Rominger, D. H., Nguyen, L., Schiller, K., Whalen, E. J., Gowen, M. and Lark, M. W. (2010) Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther. 335, 572-579. https://doi.org/10.1124/jpet.110.173005
  39. Wei, H., Ahn, S., Shenoy, S. K., Karnik, S. S., Hunyady, L., Luttrell, L. M. and Lefkowitz, R. J. (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U. S. A. 100, 10782-10787. https://doi.org/10.1073/pnas.1834556100
  40. Wisler, J. W., Rockman, H. A. and Lefkowitz, R. J. (2018) Biased G protein-coupled receptor signaling: changing the paradigm of drug discovery. Circulation 137, 2315-2317. https://doi.org/10.1161/CIRCULATIONAHA.117.028194
  41. Wortzel, I. and Seger, R. (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2, 195-209. https://doi.org/10.1177/1947601911407328
  42. Zhang, X., Min, X., Wang, S., Sun, N. and Kim, K. M. (2020) Mdm2-mediated ubiquitination of beta-arrestin2 in the nucleus occurs in a Gbetagamma- and clathrin-dependent manner. Biochem. Pharmacol. 178, 114049.
  43. Zhang, X., Wang, F., Chen, X., Li, J., Xiang, B., Zhang, Y. Q., Li, B. M. and Ma, L. (2005) Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. J. Neurochem. 95, 169-178. https://doi.org/10.1111/j.1471-4159.2005.03352.x
  44. Zheng, M., Cheong, S. Y., Min, C., Jin, M., Cho, D. I. and Kim, K. M. (2011) beta-arrestin2 plays permissive roles in the inhibitory activities of RGS9-2 on G protein-coupled receptors by maintaining RGS9-2 in the open conformation. Mol. Cell. Biol. 31, 4887-4901. https://doi.org/10.1128/MCB.05690-11