• Title/Summary/Keyword: signal pathways

Search Result 566, Processing Time 0.021 seconds

Anti-tumor Effects of Vascular Endothelial Growth Factor Receptor-3 Inhibitor on Oral Cancer Cells (구강암 세포에서 혈관내피성장인자 수용체-3 억제제의 항종양 효과)

  • Kim, Chan-Woo;Kim, Seong-Gon;Park, Young-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.4
    • /
    • pp.239-245
    • /
    • 2012
  • Purpose: Vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and lymphangiogenesis including induction of endothelial cell proliferation, migration and capillary tube formation. E7080 (S1164, Selleck chemical, Houston, TX, USA) is a muti-targeted kinase inhibitor, which targets VEGF receptor-2, 3 (VEGFR-2, 3) and inhibits survival and proliferation of tumor cell. The purpose of this study was to determine the anti-tumor effect of E7080 on oral squamous cell carcinoma. Methods: An oral squamous cell carcinoma cell line, SCC-9 was used in this study. E7080 was applied to SCC-9 cells by 3 different concentrations (1, 5, 10 ${\mu}g/mL$). Control means no application of E7080. The cellular growth was evaluated by real-time cell electronic sensing and MTT assay. The signal transduction was evaluated by Western blotting. Results: In experimental group, SCC-9 cell proliferation was decreased and the VEGFR-3 downstream pathways were inhibited compared with control. Furthermore, increasing the concentration of E7080, the ability of E7080 to disturbance of SCC-9 cell proliferation was increased. Conclusion: Proliferation of SCC-9 cells was inhibited by E7080, which was through by inhibition of VEGFR-3 downstream pathway. In vivo study with E7080 will be required to provide therapeutic benefits in oral squamous cell carcinoma.

Mechanisms Underlying Enterococcus faecalis-Induced Tumor Necrosis Factor-$\alpha$ Production in Macrophages

  • Choi, Eun-Kyoung;Kim, Dae-Eob;Oh, Won-Mann;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.43-49
    • /
    • 2010
  • Enterococcus faecalis, a gram-positive bacterium, has been implicated in endodontic infections, particularly in chronic apical periodontitis. Proinflammatory cytokines, including tumor necrosis factor-$\alpha$ (TNF-$\alpha$), are involved in the pathogenesis of these apical lesions. E. faecalis has been reported to stimulate macrophages to produce TNF-$\alpha$. The present study investigated the mechanisms involved in TNF-$\alpha$ production by a murine macrophage cell line, RAW 264.7 in response to exposure to E. faecalis. Both live and heat-killed E. faecalis induced high levels of gene expression and protein release of TNF-$\alpha$. Treatment of RAW 264.7 cells with cytochalasin D, an inhibitor of endocytosis, prevented the mRNA up-regulation of TNF-$\alpha$ by E. faecalis. In addition, antioxidant treatment reduced TNF-$\alpha$ production to baseline levels. Inhibition of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase also significantly attenuated E. faecalis-induced TNF-$\alpha$ expression by RAW 264.7 cells. Furthermore, activation of NF-${\kappa}B$ and AP-1 in RAW 264.7 cells was also stimulated by E. faecalis. These results suggest that the phagocytic uptake of bacteria is necessary for the induction of TNF-$\alpha$ in E. faecalis-stimulated macrophages, and that the underlying intracellular signaling pathways involve reactive oxygen species, ERK, p38 MAP kinase, NF-${\kappa}B$, and AP-1.

Direct Interaction Between Akt1 and Gcn5 and its Plausible Function on Hox Gene Expression in Mouse Embryonic Fibroblast Cells

  • Oh, Ji Hoon;Lee, Youra;Kong, Kyoung-Ah;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.266-269
    • /
    • 2013
  • Hox genes encode transcription factors important for anterior-posterior body patterning at early stages of embryonic development. However, the precise mechanisms by which signal pathways are stimulated to regulate Hox gene expression are not clear. In the previous study, protein kinase B alpha (Akt1) has been identified as a putative upstream regulator of Hox genes, and Akt1 has shown to regulate Gcn5, a prototypical histone acetyltransferase (HAT), in a negative way in mouse embryonic fibroblast (MEF) cells. Since the activity of HAT such as the CBP/p300, and PCAF (a Gcn5 homolog), was down-regulated by Akt through a phosphorylation at the Akt consensus substrate motif (RXRXXS/T), the amino acid sequence of Gcn5 protein was analyzed. Mouse Gcn5 contains an Akt consensus substrate motif as RQRSQS sequence while human Gcn5 does not have it. In order to see whether Akt1 directly binds to Gcn5, immunoprecipitation with anti-Akt1 antibody was carried out in wild-type (WT) mouse embryonic fibroblast (MEF) cells, and then western blot analysis was performed with anti-Akt1 and anti-Gcn5 antibodies. Gcn5 protein was detected in the Akt1 immunoprecipitated samples of MEFs. This result demonstrates that Akt1 directly binds to Gcn5, which might have contributed the down regulation of the 5' Hoxc gene expressions in wild type MEF cells.

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel;Skepper, Jeremy
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.526-531
    • /
    • 2014
  • Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

mTOR Signal Transduction Pathways Contribute to TN-C FNIII A1 Overexpression by Mechanical Stress in Osteosarcoma Cells

  • Zheng, Lianhe;Zhang, Dianzhong;Zhang, Yunfei;Wen, Yanhua;Wang, Yucai
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migration. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.

Novel Anti-Angiogenic Activity in Rubus coreanus Miquel Water Extract Suppresses VEGF-Induced Angiogenesis

  • Kim, Eok-Cheon;Kim, Hye Jin;Kim, Tack-Joong
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.209-220
    • /
    • 2014
  • Vascular endothelial growth factor (VEGF) is a key factor involved in the induction of angiogenesis and has become an attractive target for anti-angiogenesis therapies. The purpose of this study was to elucidate the anti-angiogenic activity of Rubus coreanus Miquel water extract (RCME). Rubus coreanus Miquel has long been employed as a traditional medicine, and recent studies have demonstrated that it has measureable biological activities. Thus, we investigated for the first time the effect of RCME on angiogenesis and its underlying signaling pathways. The effects of RCME were tested on in vitro models of angiogenesis, namely, proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells as well as an ex vivo model of vessel sprouting from the rat aorta in response to VEGF. We observed that VEGF-induced angiogenesis was strongly suppressed by RCME treatment compared to that of the control group. Moreover, we found that RCME inhibited VEGF-induced activation of matrix metalloproteinases and phosphorylation of extracellular signal-regulated kinase and p38, and also effectively inhibited phosphorylation of VEGF receptor 2. These results indicated that RCME inhibits angiogenesis by suppressing phosphorylation of the VEGF receptor and may be useful for the treatment of angiogenesis-dependent diseases such as cancer and diabetic retinopathy.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

Effect of High glucose on JNK/ERK signaling pathway in UMR106 cells

  • Jung, In-Ok;Jin, Mei-Hua;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.79-79
    • /
    • 2003
  • Recently diabetes has been found to be associated with metabolic bone diseases such as osteoporosis. In the present study, attempts have been made-to explore the effect of high glucose in bone formation. Osteoblast-like UMR 106 cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of UMR106 cells in a time- and dose- dependent manner as evidenced by MTT assay. For the evaluation of collagen synthesis, UMR 106 cells were cultured in high glucose media (44mM) for 24 h and the ratio of collagen content to total protein was measured. In addition, gene expression pattern of type I collagen was assessed by RT-PCR. The high concentration of glucose inhibited a collagen synthesis, a marker of bone formation activity. JNK, c- Jun N-terminal Kinase, is known to play an important role in stress-associated cell death. In this regard, we tested to determine whether high glucose has any effect on JNK activity. It has been found that treatment of high glucose induced phosphorylation of JNK. On the other hand, ERK phosphorylation was inhibited by high glucose in a dose-dependent manner. Taken together, Therefore these results indicate that inhibition of proliferation in UMR 106 cells following high glucose is related to JNK/ERK containing signal pathways. This study showed high glucose concentration could alter the bone metabolism leading to defective bone formation, suggesting that high glucose due to diabetes may playa significant role in the development of metabolic bone disease.

  • PDF

Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells

  • Ko, Hyeonseok;Kim, Sun-Joong;Shim, So Hee;Chang, HyoIhl;Ha, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.501-509
    • /
    • 2016
  • Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin's biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35-250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/agent for cancer chemotherapy.

Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling

  • Pengjam, Yutthana;Madhyastha, Harishkumar;Madhyastha, Radha;Yamaguchi, Yuya;Nakajima, Yuichi;Maruyama, Masugi
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific. Alizarin red S staining revealed a significant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influence of aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influence of aloin on ALP activity, confirming that aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway.