• Title/Summary/Keyword: signal of damage

Search Result 608, Processing Time 0.025 seconds

Bolt looseness detection and localization using time reversal signal and neural network techniques

  • Duan, Yuanfeng;Sui, Xiaodong;Tang, Zhifeng;Yun, Chungbang
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.397-410
    • /
    • 2022
  • It is essential to monitor the working conditions of bolt-connected joints, which are widely used in various kinds of steel structures. The looseness of bolts may directly affect the stability and safety of the entire structure. In this study, a guided wave-based method for bolt looseness detection and localization is presented for a joint structure with multiple bolts. SH waves generated and received by a small number (two pairs) of magnetostrictive transducers were used. The bolt looseness index was proposed based on the changes in the reconstructed responses excited by the time reversal signals of the measured unit impulse responses. The damage locations and local damage severities were estimated using the damage indices from several wave propagation paths. The back propagation neural network (BPNN) technique was employed to identify the local damages. Numerical and experimental studies were conducted on a lap joint with eight bolts. The results show that the total damage severity can be successfully detected under the effect of external force and measurement noise. The local damage severity can be estimated reasonably for the experimental data using the BPNN constructed by the training patterns generated from the finite element simulations.

Damage assessment of frame structure using quadratic time-frequency distributions

  • Chandra, Sabyasachi;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.411-425
    • /
    • 2014
  • This paper presents the processing of nonlinear features associated with a damage event by quadratic time-frequency distributions for damage identification in a frame structure. A time-frequency distribution is a function which distributes the total energy of a signal at a particular time and frequency point. As the occurrence of damage often gives rise to non-stationary, nonlinear structural behavior, simultaneous representation of the dynamic response in the time-frequency plane offers valuable insight for damage detection. The applicability of the bilinear time-frequency distributions of the Cohen class is examined for the damage assessment of a frame structure from the simulated acceleration data. It is shown that the changes in instantaneous energy of the dynamic response could be a good damage indicator. Presence and location of damage can be identified using Choi-Williams distribution when damping is ignored. However, in the presence of damping the Page distribution is more effective and offers better readability for structural damage detection.

Local Damage Detection Using Acceleration ARX Model (가속도 ARX 모델을 사용한 국부손상 탐색)

  • Shin, Soobong;Park, Hye-Youn;Kim, Jae-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.115-121
    • /
    • 2009
  • The paper presents a signal-based damage detection algorithm of ARX model using dynamic acceleration data. An ARX model correlates acceleration data measured at two locations in a structure by considering those two sets of data as input and output signals. For detecting damage, the error between the measured data and the predicted response from the defined ARX model is computed in time and used for a statistical evaluation. A normal distribution function from the error in time is constructed and its statistical characteristic values are used for the evaluation of damage. By comparing the normal distribution functions before and after damage, three different types of damage indices are proposed. The efficiency and limitation of the proposed algorithm with the statistical evaluation of damage indices have been examined and discussed through laboratory experiments.

Analysis on the Fire Accident of Vehicle Due to Damage of Connector and wiring on an Anti-lock Brake System(ABS) Module (ABS 모듈의 접속부 및 전원배선 손상으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Park, Jong-Taek;Song, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.13-19
    • /
    • 2017
  • In this paper, study of vehicle fire cases caused by connector and power wiring of anti-lock brake system(ABS) module damage is presented. The purpose of ABS module is to improve braking and steering ability under sudden stop of the vehicle by repeatedly activating and releasing the brake with electric signal via electric control unit. The electric control unit for ABS may experience incomplete contact between power line and signal line or electrical breakdown on the printed circuit board by undergoing repetitive signal change which would consequently result in electrical heat and spark, eventually leading to automotive fire. Therefore, the purpose of this paper is to provide fundamental data by analyzing connector and power wiring of ABS module damage conducive to the precise investigation on the cause of vehicle fire.

Non-contact damage monitoring technique for FRP laminates using guided waves

  • Garg, Mohit;Sharma, Shruti;Sharma, Sandeep;Mehta, Rajeev
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.795-817
    • /
    • 2016
  • A non-contact, in-situ and non-invasive technique for health monitoring of submerged fiber reinforced polymers (FRP) laminates has been developed using ultrasonic guided waves. A pair of mobile transducers at specific angles of incidence to the submerged FRP specimen was used to excite Lamb wave modes. Lamb wave modes were used for comprehensive inspection of various types of manufacturing defects like air gaps and missing epoxy, introduced during manufacturing of FRP using Vacuum Assisted Resin Infusion Molding (VARIM). Further service induced damages like notches and surface defects were also studied and evaluated using guided waves. Quantitative evaluation of transmitted ultrasonic signal in defect ridden FRPs $vis-{\grave{a}}-vis$ healthy signal has been used to relate the extent of damage in FRPs. The developed technique has the potential to develop into a quick, real time health monitoring tool for judging the service worthiness of FRPs.

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.

A new damage index for detecting sudden change of structural stiffness

  • Chen, B.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.315-341
    • /
    • 2007
  • A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.

Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution

  • Ahmadi, Hamid Reza;Anvari, Diana
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.699-709
    • /
    • 2018
  • With increasing traffic volumes and rising vehicle traffic, especially in cities, the number of pedestrian bridges has also increased significantly. Like all other structures, pedestrian bridges also suffer damage. In order to increase the safety of pedestrians, it is necessary to identify existing damage and to repair them to ensure the safety of the bridge structures. Owing to the shortcomings of local methods in identifying damage and in order to enhance the reliability of detection and identification of structural faults, signal methods have seen significant development in recent years. In this research, a new methodology, based on cone-shaped kernel distribution with a new damage index, has been used for damage detection in pedestrian truss bridges. To evaluate the proposed method, the numerical models of the Warren Type steel truss and the Arregar steel footbridge were used. Based on the results, the proposed method and damage index identified the damage and determined its location with a high degree of precision. Given the ease of use, the proposed method can be used to identify faults in pedestrian bridges.

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.759-767
    • /
    • 2017
  • Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.