• Title/Summary/Keyword: signal number estimation

Search Result 263, Processing Time 0.023 seconds

Digital Position Acquisition Method of PET Detector Module using Maximum Likelihood Position Estimation (최대우도함수를 이용한 양전자방출단층촬영기기의 검출기 모듈의 디지털 위치 획득 방법)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In order to acquire an image in a positron emission tomography, it is necessary to draw the position coordinates of the scintillation pixels of the detector module measured at the same time. To this end, in a detector module using a plurality of scintillation pixels and a small number of photosensors, it is necessary to obtain a flood image and divide a region of each scintillation pixel to obtain a position of a scintillation pixel interacting with a gamma ray. Alternatively, when the number of scintillation pixels and the number of photosensors to be used are the same, the position coordinates for the position of the scintillation pixels can be directly acquired as digital signal coordinates. A method of using a plurality of scintillation pixels and a small number of photosensors requires a process of obtaining digital signal coordinates requires a plurality of photosensors and a signal processing system. This complicates the signal processing process and raises the cost. To solve this problem, in this study, we developed a method of obtaining digital signal coordinates without performing the process of separating the planar image and region using a plurality of flash pixels and a small number of optical sensors. This is a method of obtaining the position coordinate values of the flash pixels interacting with the gamma ray as a digital signal through a look-up table created through the signals acquired from each flash pixel using the maximum likelihood function. Simulation was performed using DETECT2000, and verification was performed on the proposed method. As a result, accurate digital signal coordinates could be obtained from all the flash pixels, and if this is applied to the existing system, it is considered that faster image acquisition is possible by simplifying the signal processing process.

A Signal Detection and Estimation Method Based on Compressive Sensing (압축 센싱 기반의 신호 검출 및 추정 방법)

  • Nguyen, Thu L.N.;Jung, Honggyu;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1024-1031
    • /
    • 2015
  • Compressive sensing is a new data acquisition method enabling the reconstruction of sparse or compressible signals from a smaller number of measurements than Nyquist rate, as long as the signal is sparse and the measurement is incoherent. In this paper, we consider a simple hypothesis testing in target detection and estimation problems using compressive sensing, where the performance depends on the sparsity level of the signals being detected. We provide theoretical analysis results along with some experiment results.

A New Technique for Localization Using the Nearest Anchor-Centroid Pair Based on LQI Sphere in WSN

  • Subedi, Sagun;Lee, Sangil
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • It is important to find the random estimation points in wireless sensor network. A link quality indicator (LQI) is part of a network management service that is suitable for a ZigBee network and can be used for localization. The current quality of the received signal is referred as LQI. It is a technique to demodulate the received signal by accumulating the magnitude of the error between ideal constellations and the received signal. This proposed model accepts any number of random estimation point in the network and calculated its nearest anchor centroid node pair. Coordinates of the LQI sphere are calculated from the pair and are added iteratively to the initially estimated point. With the help of the LQI and weighted centroid localization, the proposed system finds the position of target node more accurately than the existing system by solving the problems related to higher error in terms of the distance and the deployment of nodes.

Multipath Mitigation Method Through Asymmetry Estimation of Correlation Function (상관함수의 비대칭성 추정을 통한 다중 경로 오차 제거 기법)

  • Jang Han-Jin;Moon Sung-Wook;Kim Jeong-Won;Lee Sang-Jeong;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1050-1055
    • /
    • 2006
  • Since the muiltipath signal arrives at the GPS receiver later than the line-of-sight signal, the multipath signal makes the shape of the correlation function asymmetric. This paper proposes a multipath mitigation method through asymmetry estimation of the correlation function, in which multiple correlators are utilized. The asymmetry is estimated from correlation values of correlators which have different chip spacings. Based on the estimated asymmetry, the correlation function is modified in order to get a better code tracking performance. Even through the proposed method uses multiple correlators including the narrow correlator, the acquisition performance is not degraded since the number of search cell of the narrow correlator part can be reduced in the algorithm of the proposed method. The simulation results show that the proposed method gives better performance than the generic correlator in multipath environment.

Multipath Matching Pursuit Using Prior Information (사전 정보를 이용한 다중경로 정합 추구)

  • Min, Byeongcheon;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.628-630
    • /
    • 2016
  • Compressive sensing can recover an original sparse signal from a few measurements. Its performance is affected by the number of non-zero elements in the signal. The knowledge of partial locations of non-zero elements can improve the recovery performance. In this paper, we apply the partial location knowledge to the multipath matching pursuit. The numerical results show it improves the signal recovery performance and the channel estimation performance in the ITU-VB channel.

Quality Measurement Algorithm for IS-95 Reverse-link Signal (IS-95 역방향링크 신호의 품질 측정 알고리즘)

  • Kang, Sung-Jin;Kim, Nam-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3428-3434
    • /
    • 2010
  • In this paper, we proposed and implemented a quality measurement algorithm for IS-95 reverse-link signal. To measure the quality of the received signal, equalization, carrier frequency/phase offset estimation, and timing synchronization are essential. And, all signal processing are carried out with baseband signal. The equalizer works with 4-oversampled samples to remove ICI(InterChip Interference). The frequency/phase offset estimator is followed by timing synchronizer since it can work without aid of data and timing information. As the number of interpolation in timing synchronization increases, the measurement accuracy improves, but computation load increases simultaneously. Therefore, one need to choose adequately the number of interpolation regarding to the platform performance to be used for the proposed algorithm.

Correlation Matrix Generation Technique with High Robustness for Subspace-based DoA Estimation (부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법)

  • Byeon, BuKeun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • In this paper, we propose an algorithm to improve DoA(direction of arrival) estimation performance of the subspace-based method by generating high robustness correlation matrix of the signals incident on the uniformly linear array antenna. The existing subspace-based DoA estimation method estimates the DoA by obtaining a correlation matrix and dividing it into a signal subspace and a noise subspace. However, the component of the correlation matrix obtained from the low SNR and small number of snapshots inaccurately estimates the signal subspace due to the noise component of the antenna, thereby degrading the DoA estimation performance. Therefore a robust correlation matrix is generated by arranging virtual signal vectors obtained from the existing correlation matrix in a sliding manner. As a result of simulation using MUSIC and ESPRIT, which are representative subspace-based methods,, the computational complexity increased by less than 2.5% compared to the existing correlation matrix, but both MUSIC and ESPRIT based on RMSE 1° showed superior DoA estimation performance with an SNR of 3dB or more.

Signal Estimation of Target Using Modified Bartlett Method of Weight Updating (가중치 갱신의 수정 Bartlett 방법을 이용한 목표물 신호 추정)

  • Lee, Kwan-Hyeong;Joo, Jong-Hyuk
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.330-336
    • /
    • 2016
  • In this paper, we studied for modified bartlett method to estimate desired information signal. Constrained length of bartlett method is assigned as one, and estimate desired information signal to compensate for delay time. Modified bartlett method is an optimum direction-of-arrival (DoA) estimation algorithm to apply delay time compensation to update optimum weight. The optimum weight is used linear constrained minimum variance method(LCMV). Through simulation, we are comparative analysis proposed algorithm and general Bartlett and MUSIC method. In desired signal estimation, condition simulation is an array antenna element numbers 6 or 9 and desired information signals number 3. We show the superior performance of the proposed algorithm relative to the existing method in estimation of desired information signal.

Cell ID Detection and SNR Estimation Algorithms Robust to Noise (잡음에 강인한 셀 아이디 검출 및 SNR 추정 알고리즘)

  • Lee, Chong-Hyun;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.139-145
    • /
    • 2010
  • In this paper, we propose robust cell ID detection algorithm and SNR estimation algorithm applicable to mobile base station, which can be operated independently. The proposed cell ID estimation uses signal subspace to estimate cell IDs used in cell. The proposed SNR estimation algorithm uses number of noise subspace vectors and the corresponding eigen-vectors. Through the computer simulations, we showed that performance of the proposed cell ID detection and SNR estimation algorithms are superior to existing correlation based algorithms. Also we showed that the proposed algorithm is suitable to fast moving channel in high background noise and strong interference signal.

Performance evaluation of estimation methods based on analysis of mean square error bounds for the sparse channel (Sparse 채널에서 최소평균오차 경계값 분석을 통한 채널 추정 기법의 성능 비교)

  • Kim, Hyeon-Su;Kim, Jae-Young;Park, Gun-Woo;Choi, Young-Kwan;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In this paper, we evaluate and analyze representative estimation methods for the sparse channel. In order to evaluate error performance of matching pursuit(MP) and minimum mean square error(MMSE) algorithm, lower bound of MMSE is determined by Cramer-Rao bound and compared with upper bound of MP. Based on analysis of those bounds, mean square error of MP which is effective in the estimation of sparse channel can be larger than that of MMSE according to the number of estimated tap and signal-to-noise ratio. Simulation results show that the performances of both algorithm are reversed on the sparse channel with Rayleigh fading according to signal-to-noise ratio.