DOI QR코드

DOI QR Code

A Signal Detection and Estimation Method Based on Compressive Sensing

압축 센싱 기반의 신호 검출 및 추정 방법

  • Nguyen, Thu L.N. (School of Electronic Engineering, Soongsil University) ;
  • Jung, Honggyu (School of Electronic Engineering, Soongsil University) ;
  • Shin, Yoan (School of Electronic Engineering, Soongsil University)
  • Received : 2015.03.28
  • Accepted : 2015.04.10
  • Published : 2015.06.30

Abstract

Compressive sensing is a new data acquisition method enabling the reconstruction of sparse or compressible signals from a smaller number of measurements than Nyquist rate, as long as the signal is sparse and the measurement is incoherent. In this paper, we consider a simple hypothesis testing in target detection and estimation problems using compressive sensing, where the performance depends on the sparsity level of the signals being detected. We provide theoretical analysis results along with some experiment results.

압축 센싱은 신호가 성긴 (Sparse) 특성을 지니며 선형 측정된 값들이 Incoherent 할 때, 나이퀴스트율 이하로 표본화된 신호를 원본 신호로 정확하게 복구할 수 있는 새로운 신호 획득 이론이다. 본 논문에서는 원본 신호의 Sparse한 정도에 따라 성능이 변화하는 압축 센싱을 이용한 효율적인 신호 검출 및 추정 기법을 제안하며, 이론적 분석과 함께 모의 실험 결과를 보여준다.

Keywords

References

  1. D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289- 1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  2. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  3. S. Dasgupta and A. Gupta, An elementary proof of the Johnson-Lindenstrauss lemma, Tech. Rep. TR-99-006, Berkeley, USA, 1999.
  4. P. Indyk, "Explicit constructions for compressed sensing matrices," in Proc. ACM-SIAM SODA 2008, pp. 30-33, San Francisco, USA, Jan. 2008.
  5. E. Candes, "Compressive sampling," in Proc. Int. Congress Math., vol. 3, pp. 1433-1452, Madrid, Spain, Aug. 2006.
  6. B. C. Levy, Principles of Signal Detection and Parameter Estimation, Ch. 2, Springer Science & Business Media, 2008.
  7. M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk, "Signal processing with compressive measurements," IEEE J. Sel. Topics in Signal Proc., vol. 4, no. 2, pp. 445-460, Apr. 2010. https://doi.org/10.1109/JSTSP.2009.2039178
  8. G. Reeves and D. Donoho, "The minimax noise sensitivity in compressed sensing," in Proc. IEEE ISIT 2013, pp. 116-120, Istanbul, Turkey, Jul. 2013.

Cited by

  1. LZ78 압축 데이터의 구조적 패턴에 기반한 새로운 오류 검출 알고리즘 vol.41, pp.11, 2016, https://doi.org/10.7840/kics.2016.41.11.1356
  2. 직교주파수분할다중화 통신 시스템을 위한 압축 센싱 기반 임펄스 잡음 및 클리핑 잡음 감쇄 기법 vol.41, pp.12, 2015, https://doi.org/10.7840/kics.2016.41.12.1739
  3. 시스템 함수 및 변복조 개념 적용 능동 방식 3차원 물체 좌표 복원 vol.20, pp.5, 2019, https://doi.org/10.5762/kais.2019.20.5.530