• 제목/요약/키워드: signal measurement

검색결과 3,137건 처리시간 0.097초

Correlation Analysis between Fat Fraction and Bone Mineral Density Using the DIXON Method for Fat Dominant Tissue in Knee Joint MRI: A Preliminary Study (지방우세 딕슨기법을 이용한 슬관절 자기공명영상 지방신호분율과 골밀도 간의 상관관계 분석: 예비 연구)

  • Sung Hyun An;Kyu-Sung Kwack;Sunghoon Park;Jae Sung Yun;Bumhee Park;Ji Su Kim
    • Journal of the Korean Society of Radiology
    • /
    • 제84권2호
    • /
    • pp.427-440
    • /
    • 2023
  • Purpose This study aimed to investigate the correlation between the fat signal fraction (FF) of the fat-dominant bone tissue of the knee joint, measured using the MRI Dixon method (DIXON) technique, and bone mineral density (BMD). Materials and Methods Among the patients who underwent knee DIXON imaging at our institute, we retrospectively analyzed 93 patients who also underwent dual energy X-ray absorptiometry within 1 year. The FFs of the distal femur metaphyseal (Fm) and proximal tibia metaphyseal (Tm) were calculated from the DIXON images, and the correlation between FF and BMD was analyzed. Patients were grouped based on BMD of lumbar spine (L), femoral neck (FN), and common femur (FT) respectively, and the Kruskal-Wallis H test was performed for FF. Results We identified a significant negative correlation between TmFF and FN-BMD in the entire patient group (r = -0.26, p < 0.05). In female patients, TmFF showed a negative correlation with FN-BMD, FT-BMD, and L-BMD (r = -0.38, 0.28 and -0.27, p < 0.05). In male patients, FmFF was negatively correlated with only FN-BMD and FT-BMD (r = -0.58 and -0.42, p < 0.05). There was a significant difference in the TmFF between female patients grouped by BMD (p < 0.05). In male patients, there was a significant difference in FmFF (p < 0.05). Conclusion Overall, we found that FF and BMD around the knee joints showed a negative correlation. This suggests the potential of FF measurement using DIXON for BMD screening.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권8호
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.

${T_2}weighted$- Half courier Echo Planar Imaging

  • 김치영;김휴정;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • 제5권1호
    • /
    • pp.57-65
    • /
    • 2001
  • Purpose : $T_2$-weighted half courier Echo Planar Imaging (T2HEPI) method is proposed to reduce measurement time of existing EPI by a factor of 2. In addition, high $T_2$ contrast is obtained for clinical applications. High resolution single-shot EPI images with $T_2$ contrast are obtained with $128{\times}128$ matrix size by the proposed method. Materials and methods : In order to reduce measurement time in EPI, half courier space is measured, and rest of half courier data is obtained by conjugate symmetric filling. Thus high resolution single shot EPI image with $128{\times}128$ matrix size is obtained with 64 echoes. By the arrangement of phase encoding gradients, high $T_2$ weighted images are obtained. The acquired data in k-space are shifted if there exists residual gradient field due to eddy current along phase encoding gradient, which results in a serious problem in the reconstructed image. The residual field is estimated by the correlation coefficient between the echo signal for dc and the corresponding reference data acquired during the pre-scan. Once the residual gradient field is properly estimated, it can be removed by the adjustment of initial phase encoding gradient field between $70^{\circ}$ and $180^{\circ}$ rf pulses. Results : The suggested T2EPl is implemented in a 1.0 Tela whole body MRI system. Experiments are done with the effective echo times of 72ms and 96ms with single shot acquisitions. High resolution($128{\times}128$) volunteer head images with high $T_2$ contrast are obtained in a single scan by the proposed method. Conclusion : Using the half courier technique, higher resolution EPI images are obtained with matrix size of $128{\times}128$ in a single scan. Furthermore $T_2$ contrast is controlled by the effective echo time. Since the suggested method can be implemented by software alone (pulse sequence and corresponding tuning and reconstruction algorithms) without addition of special hardware, it can be widely used in existing MRI systems.

  • PDF

Study on Strain Measurement of Agricultural Machine Elements Using Microcomputer (Microcomputer를 이용(利用)한 농업기계요소(農業機械要素)의 Strain 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Kee Dae;Kim, Tae Kyun;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • 제8권1호
    • /
    • pp.90-96
    • /
    • 1981
  • To design more efficient agricultural machinery, the accurately measuring system among many other factors is essential. A light-beam oscillographic recorder is generally used in measuring dynamic strain but it is not compatible with the extremely high speed measuring system such as 1,000 m/s, also is susceptable to damage due to vibration while using the system in field. The recorder used light sensitive paper for strip chart recording. The reading and analysis of data from the strip charts is very cumbersome, errorneous and time consuming. A microcomputer was interfaced with A/D converter, microcomputer program was developed for measuring, system calibration was done and the strain generated from a cantilever beam vibrator was measured. The results are summarized as follows. 1. Microcomputer program was developed to perform strain measuring of agricultural machine elements and could be controled freely the measuring intervals, no. of channels and no. of data. The maximum measuring speed was $62{\mu}s$. 2. Calibration the system was performed with triangle wave generated from a function generator and checked by an oscilloscope. The sampled data were processed using HP 3000 minicomputer of Chungnam National University computer center the graphical results were triangle same as input wave and so the system have been out of phase distorsion and amplitude distorsion. 3. The strain generated from a cantilever beam vibrator which has free vibration period of 0.019 second were measured by the system controlled to have l.0 ms of time interval and its computer output showing vibration curve which is well filted to theoretical value. 4. Using microcomputer on measuring the strain of agricultural machine elements could not only save analyzing time and recording papers but also get excellent adaptation to field experiment, especially in measurement requiring high speed and good precision.

  • PDF

The Significance of Acetylcholine Receptor Autoantibody Test (아세틸콜린 수용체 항체(Acetylcholine receptor autoantibody) 검사의 의의)

  • Yoo, Soh-Yeon;Lim, Soo-Yeon;Pack, Song-Ran;Seo, Mi-Hye;Moon, Hyung-Ho;You, Sun-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • 제15권1호
    • /
    • pp.113-116
    • /
    • 2011
  • Purpose: Acetylcholine receptor antibodies cause acetylcholine receptor loss, which is responsible for failure of the neuromuscular junction in the acetylcholine receptor autoantibody. The disease characterized by muscle weakness and fatigue, myasthenia gravis(MG) occurs when the body inappropriately produces antibodies against acetylcholine receptors, and thus inhibits proper acetylcholine signal transmission. And this reason, the measurement of acetylcholine receptor antibodies can be of considerable value in disease diagnosis. Methods: From 2010. August to September, we tested orderd AchRAb 19 samples to get the results. 1. Pipette $5{\mu}{\ell}$ undiluted patient sera and kit control and add 125I AChR $50{\mu}{\ell}$ and incubate at R.T for 2 hours. 2. Pipette $50{\mu}{\ell}$ of anti-human IgG into each tube, and incubate at $2{\sim}8^{\circ}C$ for 2 hours. 3. Pipette $25{\mu}{\ell}$ precipitation enhancer into each tube and add 1mL washing solution into all tubes. 4. Centrifuge each tube for 20minutes at $2{\sim}8^{\circ}C$ at 1500g. 5. Aspirate or decant the supernatant. 6. Pipette 1 mL washing solution into all tubes and resuspend the pellet and repeat centrifugation. 7. Aspirate or decant the supernatant and count all tubes on a gamma counter. Results: Cut off value is 0.2 nmol/L and the results taken below 0.2 nmol/L are negative, the results above that identified as being positive values. We assayed the 19 patients samples and got 7 positive results. Of which, 6 patients were diagnosed as MG.(85.7%). Conclusions: Acetylcholine Receptor autoantibody test is intended for use by persons only for the quantitative determination of it in human serum. Even if measurement of the antibodies is not a routine test, it can be of considerable value in disease diagnosis.

  • PDF

MEASUREMENT OF PULPAL BLOOD FLOW USING A LASER DOPPLER FLOWMETER (Laser Doppler flowmeter를 이용한 치수혈류 측정)

  • Ban, Tae-Whan;Lee, Jae-Sang;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • 제24권4호
    • /
    • pp.560-569
    • /
    • 1999
  • Blood supply rather than nerve supply implies pulp vitality. To evaluate pulp vitality clinically, electric pulp test and thermal test which are based on sensory nerve response have been used in addition to many auxiliary data such as past dental history, visual inspection, radiographic examination, percussion, palpation and transillumination test. However, reactivity of the nerves to the stimulation is not synonymous with normalcy. Therefore measurement of pulpal blood flow using a laser Doppler flowmeter became a new trial to test the pulp vitality. The purpose of the present study was to evaluate normal pulpal blood flow level of maxillary teeth in adult to provide a guideline in determining the vitality of dental pulp. Pulpal blood flow was measured in maxillary central and lateral incisors, canines, first and second premolars and first molars of seventy nine adults of 22 - 30 years old using a laser Doppler flowmeter (PeriFlux 4001, Perimed Co., Stockholm, Sweden, 780 nm infrared laser, 1mW). For directly-made splints, silicone rubber impressions were taken directly from the mouth. For indirectly-made splints, alginate impressions were taken from the mouth and stone cast were made. After making depressions on the buccal surfaces of the cast teeth to indicate the hole positions, second impressions with vinyl polysyloxane putty were taken from the cast. Holes for the laser probes were made at the putty impressions 4mm above the gingival level. Laser probe (PF416 dental probe, 1.5mm) was inserted in the prepared hole and the splint was set in the mouth. After 10 minutes of patient relaxing, pulpal blood flow was recorded for 5 minutes on each tooth. The recorded flow was saved in the computer and calculated with a software 'Perisoft' version 5.1. Pulpal blood flow was also recorded in six teeth of five individuals with no response to electric pulp test and cold test, with periapical radiolucency, or with history of root canal treatment to compare with nonvital teeth. The difference between the mean flow values of each group of teeth were analyzed using one-way ANOVA and Duncan's Multiple Range test. The results were as follows: 1. The average pulpal blood flow values of all the tested teeth of each location were between 9 - 16 Perfusion Unit. Pulpal blood flow value was highest in maxillary lateral incisors, followed by first premolars, second premolars, canines, central incisors, and then first molars (p<0.01). 2. In six anterior teeth, indirectly-made splint group showed higher pulpal blood flow values than directly-made splint group (p<0.01). In posterior teeth, however, there was no significant flow value difference between directly-made splint group and indirectly-made splint one (p>0.05). 3. Teeth with vital pulps showed higher signal values than teeth with nonvital pulps (p<0.01), and the flow photographs showed heartbeat-synchronous fluctuations and vasomotions, while those were absent in non vital tooth.

  • PDF

The Research to Correct Overestimation in TOF-MRA for Severity of Cerebrovascular Stenosis (3D-SPACE T2 기법에 의한 TOF-MRA검사 시 발생하는 혈관 내 협착 정도의 측정 오류 개선에 관한 연구)

  • Han, Yong Su;Kim, Ho Chul;Lee, Dong Young;Lee, Su Cheol;Ha, Seung Han;Kim, Min Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제51권12호
    • /
    • pp.180-188
    • /
    • 2014
  • It is very important accurate diagnosis and quick treatment in cerebrovascular disease, i.e. stenosis or occlusion that could be caused by risk factors such as poor dietary habits, insufficient exercise, and obesity. Time-of-flight magnetic resonance angiography (TOF-MRA), it is well known as diagnostic method without using contrast agent for cerebrovascular disease, is the most representative and reliable technique. Nevertheless, it still has measurement errors (also known as overestimation) for length of stenosis and area of occlusion in celebral infarction that is built by accumulation and rupture of plaques generated by hemodynamic turbulence. The purpose of this study is to show clinical trial feasibility for 3D-SPACE T2, which is improved by using signal attenuation effects of fluid velocity, in diagnosis of cerebrovascular disease. To model angiostenosis, strictures of different proportions (40%, 50%, 60%, and 70%) and virtual blood stream (normal saline) of different velocities (0.19 ml/sec, 1.5 ml/sec, 2.1 ml/sec, and 2.6 ml/sec) by using dialysis were made. Cross-examinations were performed for 3D-SPACE T2 and TOF-MRA (16 times each). The accuracy of measurement for length of stenosis was compared in all experimental conditions. 3D-SPACE 2T has superiority in terms of accuracy for measurements of the length of stenosis, compared with TOF-MRA. Also, it is robust in fast blood stream and large stenosis than TOF-MRA. 3D-SPACE 2T will be promising technique to increase diagnosis accuracy in narrow complex lesions as like two cerebral small vessels with stenosis, created by hemodynamic turbulence.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • 제28권4호
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Background effect on the measurement of trace amount of uranium by thermal ionization mass spectrometry (열이온화 질량분석에 의한 극미량 우라늄 정량에 미치는 바탕값 영향)

  • Jeon, Young-Shin;Park, Yong-Joon;Joe, Kih-Soo;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • 제21권6호
    • /
    • pp.487-494
    • /
    • 2008
  • An experiment was performed for zone refined Re-filament and normal (nonzone refined) Re-filament to reduce the background effect on the measurement of low level uranium samples. From both filaments, the signals which seemed to come from a cluster of light alkali elements, $(^{39}K_6)^+$, $(^{39}K_5+^{41}K)^+$ and $PbO_2$ were identified as the isobaric effect of the uranium isotopes. The isobaric effect signal was completely disappeared by heating the filament about $2000^{\circ}C$ at < $10^{-7}$ torr of vacuum for more than 1.5 hour in zone refined Refilaments, while that from the normal Re-filaments was not disappeared completely and was still remained as 3 pg. of uranium as the impurities after the degassing treatment was performed for more than 5 hours at the same condition of zone refined filaments. A threshold condition eliminating impurities were proved to be at 5 A and 30 minutes of degassing time. The uranium content as an impurity in rhenium filament was checked with a filament degassing treatment using the U-233 spike by isotope dilution mass spectrometry. A 0.31 ng of U was detected in rhenium filament without degassing, while only 3 pg of U was detected with baking treatment at a current of 5.5 A for 1 hr. Using normal Re-filaments for the ultra trace of uranium sample analysis had something problem because uranium remains to be 3 pg on the filament even though degassed for long hours. If the 1 ng uranium were measured, 0.3% error occurred basically. It was also conformed that ionization filament current was recommended not to be increased over 5.5 A to reduce the background. Finally, the contents of uranium isotopes in uranium standard materials (KRISS standard material and NIST standard materials, U-005 and U-030) were measured and compared with certified values. The differences between them showed 0.04% for U-235, 2% for U-234 and 2% for U-236, respectively.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • 제23권1호
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.