• Title/Summary/Keyword: signal features

Search Result 1,100, Processing Time 0.031 seconds

Classification of Emotional States of Interest and Neutral Using Features from Pulse Wave Signal

  • Phongsuphap, Sukanya;Sopharak, Akara
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.682-685
    • /
    • 2004
  • This paper investigated a method for classifying emotional states by using pulse wave signal. It focused on finding effective features for emotional state classification. The emptional states considered here consisted of interest and neutral. Classification experiments utilized 65 and 60 samples of interest and neutral states respectively. We have investigated 19 features derived from pulse wave signals by using both time domain and frequency domain analysis methods with 2 classifiers of minimum distance (normalized Euclidean distanece) and ${\kappa}$-Nearest Neighbour. The Leave-one-out cross validation was used as an evaluation mehtod. Based on experimental results, the most efficient features were a combination of 4 features consisting of (i) the mean of the first differences of the smoothed pulse rate time series signal, (ii) the mean of absolute values of the second differences of thel normalized interbeat intervals, (iii) the root mean square successive difference, and (iv) the power in high frequency range in normalized unit, which provided 80.8% average accuracy with ${\kappa}$-Nearest Neighbour classifier.

  • PDF

A Dual-scale Network with Spatial-temporal Attention for 12-lead ECG Classification

  • Shuo Xiao;Yiting Xu;Chaogang Tang;Zhenzhen Huang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2361-2376
    • /
    • 2023
  • The electrocardiogram (ECG) signal is commonly used to screen and diagnose cardiovascular diseases. In recent years, deep neural networks have been regarded as an effective way for automatic ECG disease diagnosis. The convolutional neural network is widely used for ECG signal extraction because it can obtain different levels of information. However, most previous studies adopt single scale convolution filters to extract ECG signal features, ignoring the complementarity between ECG signal features of different scales. In the paper, we propose a dual-scale network with convolution filters of different sizes for 12-lead ECG classification. Our model can extract and fuse ECG signal features of different scales. In addition, different spatial and time periods of the feature map obtained from the 12-lead ECG may have different contributions to ECG classification. Therefore, we add a spatial-temporal attention to each scale sub-network to emphasize the representative local spatial and temporal features. Our approach is evaluated on PTB-XL dataset and achieves 0.9307, 0.8152, and 89.11 on macro-averaged ROC-AUC score, a maximum F1 score, and mean accuracy, respectively. The experiment results have proven that our approach outperforms the baselines.

A Study on the Adaptive Method for Extracting Optimum Features of Speech Signal (음성신호의 최적특징을 적응적으로 추출하는 방법에 관한 연구)

  • 장승관;차태호;최웅세;김창석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.373-380
    • /
    • 1994
  • In this paper, we proposed a method of extracting optimum features of speech signal to adjust signal level. For extracting features of speech signal we used FRLS(Fast Recursive Least Square) algorithm, we adjusted each frames of equal to constant level, and extracted optimum features of speech signal by using equalized autocorrelation function proposed in this paper.

  • PDF

The Features Extraction of Ultrasonic Signal to Various Type of Defects in Solid (고체내부의 결함형태에 따른 초음파 신호의 특징추출)

  • Shin, Jin-Seob;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.62-67
    • /
    • 1995
  • In this paper, the features extraction of reflected ultrasonic signals from various type of defects existing in Al metal has been studied by digital signal processing. Since the reflected signals from various type of the defects are ambiguous in features distinction from effects of noise, Wiener filtering using AR (auto-regressive) technique and least-absolute-values norm method has been used in features extraction and comparison of signals. In this experiment, three types of the defect in aluminum specimen have been considered: a flat cut, an angular cut, a circular hole. And the reflected signal have been measured by pulse-echo methods. In the result of digital signal processing of the reflected signal, it has been found that the features extraction method have been effective for classification of the reflected signals from various defects.

  • PDF

Identification of Individuals using Single-Lead Electrocardiogram Signal (단일 리드 심전도를 이용한 개인 식별)

  • Lim, Seohyun;Min, Kyeongran;Lee, Jongshill;Jang, Dongpyo;Kim, Inyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • We propose an individual identification method using a single-lead electrocardiogram signal. In this paper, lead I ECG is measured from subjects in various physical and psychological states. We performed a noise reduction for lead I signal as a preprocessing stage and this signal is used to acquire the representative beat waveform for individuals by utilizing the ensemble average. From the P-QRS-T waves, features are extracted to identify individuals, 19 using the duration and amplitude information, and 16 from the QRS complex acquired by applying Pan-Tompkins algorithm to the ensemble averaged waveform. To analyze the effect of each feature and to improve efficiency while maintaining the performance, Relief-F algorithm is used to select features from the 35 features extracted. Some or all of these 35 features were used in the support vector machine (SVM) learning and tests. The classification accuracy using the entire feature set was 98.34%. Experimental results show that it is possible to identify a person by features extracted from limb lead I signal only.

A New Robust Signal Recognition Approach Based on Holder Cloud Features under Varying SNR Environment

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4934-4949
    • /
    • 2015
  • The unstable characteristic values of communication signals along with the varying SNR (Signal Noise Ratio) environment make it difficult to identify the modulations of signals. Most of relevant literature revolves around signal recognition under stable SNR, and not applicable for signal recognition at varying SNR. To solve the problem, this research developed a novel communication signal recognition algorithm based on Holder coefficient and cloud theory. In this algorithm, the two-dimensional (2D) Holder coefficient characteristics of communication signals were firstly calculated, and then according to the distribution characteristics of Holder coefficient under varying SNR environment, the digital characteristics of cloud model such as expectation, entropy, and hyper entropy are calculated to constitute the three-dimensional (3D) digital cloud characteristics of Holder coefficient value, which aims to improve the recognition rate of the communication signals. Compared with traditional algorithms, the developed algorithm can describe the signals' features more accurately under varying SNR environment. The results from the numerical simulation show that the developed 3D feature extraction algorithm based on Holder coefficient cloud features performs better anti-noise ability, and the classifier based on interval gray relation theory can achieve a recognition rate up to 84.0%, even when the SNR varies from -17dB to -12dB.

sEMG Signal based Gait Phase Recognition Method for Selecting Features and Channels Adaptively (적응적으로 특징과 채널을 선택하는 sEMG 신호기반 보행단계 인식기법)

  • Ryu, J.H.;Kim, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2013
  • This paper propose a surface EMG signal based gait phase recognition method that selects features and channels adaptively. The proposed method can be used to control powered artificial prosthetic for lower limb amputees and can reduce overhead in real-time pattern recognition by selecting adaptive channels and features in an embedded device. The method can enhance the classification accuracy by adaptively selecting channels and features based on sensitivity and specificity of each subject because EMG signal patterns may vary according to subject's locomotion convention. In the experiments, we found that the muscles with highest recognition rate are different between human subjects. The results also show that the average accuracy of the proposed method is about 91% whereas those of existing methods using all channels and/or features is about 50%. Therefore we assure that sEMG signal based gait phase recognition using small number of adaptive muscles and corresponding features can be applied to control powered artificial prosthetic for lower limb amputees.

  • PDF

The Imperfection Feature Effects on the I/Q modulator in the RF transmitter (RF 송신부의 I/Q 변조기에서의 Imperfection 특성의 영향)

  • Park, Yong-Kuk;Ko, Jae-Hyeong;Won, Kwang-Ho;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1391-1392
    • /
    • 2008
  • The modulation quality of the I/Q modulator in a wireless transmitter usually affects system performance and it mostly depends on both a nonlinearity and a distortion, from the third order intermodulation(IM3) signal and the imperfection features such as an input amplitude error and a local phase error, respectively. This paper focused on how much the Single Sideband Ratio(SSR), which indicates the signal distortion, changes according to the variation of the imperfection features. Since a desired signal, side band and IM3 signals at the I/Q modulator output are also represented with those power series coefficients and the imperfection features, the effects of the imperfection features on SSR can be clearly analyzed.

  • PDF

Optimal Datum Unit Definition for Diagnostics of Journal Bearing System (저널베어링 상태 진단을 위한 최적의 데이터 분석 기준 설정)

  • Youn, Byeng D.;Jung, Joonha;Jeon, Byungchul;Kim, Yeon-Whan;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.84-89
    • /
    • 2014
  • Data-driven method for fault diagnostics system often use machine learning technique. To use such technique proper signal processing should be implemented such as time synchronous averaging (TSA) for ball bearing systems. However, for journal bearing diagnostics systems not much has been researched, and yet a proper signal processing method has not been studied. Therefore, in this research an optimal datum unit for a reliable journal bearing diagnostics system along with angular resampling process is being suggested. Before extracting time and frequency domain features, angular resampling is applied to each cycle of vibration data. As to preserve the characteristics of vibration signal, averaging method is replaced by finding the optimal datum unit which strengthens statistical characteristics of vibration signal. Then 20 features were extracted for various cases, and those features are being evaluated by two criteria, separability and classification accuracy.

  • PDF

Features Analysis of Speech Signal by Adaptive Dividing Method (음성신호 적응분할방법에 의한 특징분석)

  • Jang, S.K.;Choi, S.Y.;Kim, C.S.
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.63-80
    • /
    • 1999
  • In this paper, an adaptive method of dividing a speech signal into an initial, a medial and a final sound of the form of utterance utilized by evaluating extreme limits of short term energy and autocorrelation functions. By applying this method into speech signal composed of a consonant, a vowel and a consonant, it was divided into an initial, a medial and a final sound and its feature analysis of sample by LPC were carried out. As a result of spectrum analysis in each period, it was observed that there existed spectrum features of a consonant and a vowel in the initial and medial periods respectively and features of both in a final sound. Also, when all kinds of words were adaptively divided into 3 periods by using the proposed method, it was found that the initial sounds of the same consonant and the medial sounds of the same vowels have the same spectrum characteristics respectively, but the final sound showed different spectrum characteristics even if it had the same consonant as the initial sound.

  • PDF