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Abstract 

 
The electrocardiogram (ECG) signal is commonly used to screen and diagnose cardiovascular 
diseases. In recent years, deep neural networks have been regarded as an effective way for 
automatic ECG disease diagnosis. The convolutional neural network is widely used for ECG 
signal extraction because it can obtain different levels of information. However, most previous 
studies adopt single scale convolution filters to extract ECG signal features, ignoring the 
complementarity between ECG signal features of different scales. In the paper, we propose a 
dual-scale network with convolution filters of different sizes for 12-lead ECG classification. 
Our model can extract and fuse ECG signal features of different scales. In addition, different 
spatial and time periods of the feature map obtained from the 12-lead ECG may have different 
contributions to ECG classification. Therefore, we add a spatial-temporal attention to each 
scale sub-network to emphasize the representative local spatial and temporal features. Our 
approach is evaluated on PTB-XL dataset and achieves 0.9307, 0.8152, and 89.11 on macro-
averaged ROC-AUC score, a maximum F1 score, and mean accuracy, respectively. The 
experiment results have proven that our approach outperforms the baselines. 
 
 
Keywords: 12-lead ECG, deep neural networks, signal features, dual-scale network, 
spatial-temporal attention. 
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1. Introduction 

Cardiovascular disease (CVD) seriously affects people's health and is the leading cause of 
death worldwide. According to statistics, cardiovascular deaths account for more than 30% of 
global deaths [1]. Electrocardiogram (ECG) is a one-dimensional medical signal obtained from 
the surface of human body, which reflect heart's electrical activities [2]. It is commonly 
employed for detecting and diagnosing various cardiac conditions, such as heart attack, 
myocardial ischemia, and arrhythmia. However, the visual inspection of ECG signal by a 
clinician or cardiologist is difficult and time-consuming. Moreover, it is prone to human error. 
Therefore, how to realize automatic classification of ECG signals to assist human diagnosis 
has become an important work. In recent years, intelligent medical care has become 
increasingly prominent. ECG based automatic detection of cardiovascular diseases can assist 
doctors in clinical operations.  

The single-lead ECG signal is used for basic cardiac monitoring. Many studies have used 
single-lead ECG signal to classify ECG into different heartbeats and diseases. However, the 
single-lead ECG signal has the shortcomings of insufficient information and the diagnosis of 
many diseases requires information from different leads. Therefore, 12-lead ECG recordings 
are used to makes a diagnosis, which is the standard data for the cardiologist to diagnose the 
diseases. It provides a comprehensive view and detailed information of heart activities from 
different spatial angles, which overcomes the shortcomings of limited single-lead ECG signal. 
However, there are few studies on 12-lead ECG compared with single-lead ECG. 

Deep learning has made great progress in the application of medical assistance and 
healthcare, such as drug development, medical image diagnosis and genomic analysis [3]. 
Meanwhile, it is employed to solve ECG classification problem. Deep learning methods can 
automatically extract features of ECG signal and realize ECG classification. The convolutional 
neural network (CNN) is the most commonly method to achieve ECG classification, which 
can obtain features of different levels. Many methods based on single scale CNN network with 
single scale convolution filters are proposed. However, each lead in the 12-lead ECG recording 
is extremely long sequence, which consists of many heartbeats. The single-scale network with 
single scale convolution filters is difficult to obtain the information of the long ECG sequence. 
Since convolutional filters of different sizes learn different scope of reception fields [4]. 
Compared with single scale convolutional filters, combining these features extracted by 
different size convolutional filters will provide better feature representation. Specifically, 
small scale convolution filters have small receptive field, which are appropriate for capturing 
local statistical information and amplitude information in the ECG signal [3]. Large scale 
convolutional filters have large receptive field, which is beneficial to extract many 
morphological features and interval information. In addition, the contribution of various 
spatial and time periods in the feature map from 12-lead ECG may differ in ECG classification. 
Many existing studies are not able to focus on important channels and time periods of the 
feature map simultaneously. 

To solve the above problems, we propose a dual-scale network with spatial-temporal 
attention (STADSNet) for 12-lead ECG classification. The main contributions are summarized 
as below: 
1. Firstly, we propose a dual-scale network with convolution filters of different sizes for 12-

lead ECG signal feature extraction. The network includes two sub-networks to extract 
ECG features of different scales. 

2. We add a spatial-temporal attention to each sub-network. The spatial-temporal attention 
can assign different weights to different channel information and time information, which 
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is conducive to obtaining representative local spatial-temporal features of ECG signal 
simultaneously. 

3. Finally, we evaluate our model on PTB-XL dataset and achieve 0.9307, 0.8152, 89.11 on 
macro-averaged ROC-AUC, F1 score (Max), and Mean Accuracy, respectively. 

The rest of this paper is structured as follows: The related works of ECG classification is 
described in Section 2. Section 3 presents our proposed method of ECG classification. Section 
4 presents our experiment to verify our method. Finally, Section 5 summarizes this paper. 

2. Related Works 
Advances in artificial intelligence technology have enabled automatic ECG classification. In 
recent years, many methods of ECG signal classification have been proposed, which involves 
three main steps: ECG data preprocessing, extracting feature and ECG classification. Since 
the raw ECG signal has noises and varies in length. Therefore, in the preprocessing stage, ECG 
signal need to be denoised, removed baseline drift and processed as the same length. Feature 
extraction is the most important step. It is usually achieved by traditional ECG classification 
methods and ECG classification methods based on deep learning.  

Traditional ECG classification methods extract features manually by cardiologists or using 
traditional feature extraction algorithms. Features include RR intervals, mentality features, 
time-frequency etc. The statistical methods or some feature selection algorithms are used to 
select the most representative features for training the classifier, such as support vector 
machine (SVM), decision tree (DT) and naive bayes etc. The classifiers classify ECG signal 
into different types of heartbeats and diseases. Ye et al. [5]  extract morphological features and 
dynamic features of the two leads separately. Then the features of the two leads are fused. 
Finally, SVM is used to classify 16 heartbeats categories and the average accuracy reached 
99.3%. Nasiri et al. [6] extract twenty-two features manually, then use SVM to achieve four 
types arrhythmias classification with 93% accuracy. Acharya et al. [7] first extract thirteen 
nonlinear features then use KNN and DT classifiers to classify five heartbeats types, with an 
average accuracy of 96.3%. In [8], nonlinear features and frequency domain features are 
extracted for Arrhythmia Classification. Finally, accuracy of 98.8% is obtained on MIT-BIH 
arrhythmia database. In general, traditional ECG classification methods are relatively faster in 
training and prediction. However, ECG signal contains many types of waveform and noise. 
The potential information in the original signal is ignored by manual feature extraction. In 
addition, the performance of traditional training classifiers is usually affected by data 
distribution. If the data distribution changes, the performance of the classifier can be 
significantly affected. The selection of model parameters becomes more difficult with the 
increase of feature dimension. Therefore, it is often difficult for traditional methods to deal 
with ECG signals effectively. 

With deep learning technology making significant achievements in natural language 
processing and image classification. Many methods based on deep learning are proposed for 
ECG classification. Methods base on deep learning automatically extract features and realizes 
ECG classification. The CNN is an effective method, which can obtain features of different 
levels from ECG signals. In addition, ECG signal is 1-D signal. The 1-D CNN is used for 
feature extraction from the raw ECG signal. Hannun et al. [9] propose a model based on 34-
layer CNN. The model is trained and tested using 91232 single-lead ECG recordings. Finally, 
F1 score achieved 0.837, which exceeded that of average cardiologists. Wang et al. [10] 
combine the attention module with CNN to effectively extract the features of different stages 
and realize 9 arrhythmias categories. It shows that features extracted by CNN at different 

https://dict.youdao.com/w/simultaneously/#keyfrom=E2Ctranslation
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stages are very important to classification results. Meanwhile, the attention module assigns a 
weight to the features extracted at different stages. In addition to [10], many other studies have 
also used attention modules, which improve the classification results. Many existing studies 
convert 1-D raw ECG signal into 1-D images. Then 2-D CNN is used to feature extraction. 
Wang et al. [11] use transform the ECG signal to the 2D-scalogram. Then 2-D CNN is used 
to extract time-frequency domain features, which combines RR interval features for heartbeats 
classification. The accuracy of 98.74% is achieved. Recurrent neural network (RNN) is an 
effective method for time series signal processing. Therefore, RNN is also utilized to solve 
ECG classification problem. In [12], authors propose LSTM-AE model to extract high-level 
features and then use SVM to classify five heartbeats. Finally, accuracy reaches 99.45%. Some 
studies combine CNN and LSTM for ECG signal classification. In [13], the researchers 
combine features obtained by CNN and bi-directional LSTM for heartbeats classification. The 
model inclues two network branches, which is CNN network and Bi-directional LSTM 
network. The accuracy is 99.42%. Chen et al. [14] uses a single beat and three beats from the 
single-lead ECG signal as two inputs. Then ECG signal information of different types was 
extracted by two network branches, which consists of SE-Residual blocks and bi-directional. 
Finally, the ECG signal is classified into four heartbeats categories by information fusion. The 
accuracy is 99.56%. Yao et al. [2] combine CNN and LSTM to fuse different types of features 
of ECG signal. To focus on important information, the attention module is added after LSTM. 
Finally, it completes the classification of 9 cardiac arrhythmias categories with accuracy of 
81.2%. Recently, many studies have applied Transformer to ECG classification models have 
been used to ECG classification. Yan et al. [15] divide a long ECG signal into multiple 
heartbeats. Then use Transformer to get features of each heartbeats. Finally, the features of 
multiple heartbeats are fused to achieve the ECG classification. 

The above models all adopt single scale network, ignoring the interaction of different scale 
features. The ECG signal is a time series with a long duration. Therefore, the extraction of 
features at different scales is crucial for ECG classification. In image classification field, multi-
scale network is proposed and achieves good results. Therefore, some studies have applied 
multi-scale networks to the medical field. Zhang et al. [3] use multi-scale networks for ECG 
arrhythmia classification. The dilated convolution used in the network to achieve multi-scale 
feature extraction. Inspired by it, we propose a dual-scale network for ECG classification. At 
the same time, spatial-temporal attention is added to the dual-scale network. Since the network 
can pay attention to important spatial-temporal features. 

3. Methods 

3.1 Problem Definition 
The input of the model is ECG recording, which is time-series signal. The original ECG 
recording is ( ) [ ]12 , 1,i lx R i n×∈ ∈ , where l  represents length of ECG signal, 12 represents 12-
lead and n  represents the quantity of ECG recordings. The corresponding reference label of 

( )ix  is ( ) ( ) ( )( )1 ,...,i i i
cy y y= , where c  represents the number of disease categories. The model 

needs to obtain representative features from ECG recording and output correct labels. The 
output of model is a sequence of labels ( ) ( ) ( )

1ˆ ˆ ˆ,...,i i i
cy y y =   . If ( )ix  has the label ˆ jy , { }1,2,...,j c∈ , 

then ˆ 1jy =  for the vector ( )ˆ iy  otherwise ˆ 0jy = . 
To effectively obtain the representative features of ECG recording and achieve ECG 
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classification, we propose a novel model architecture. It takes ECG recording as input and 
output a sequence of labels. The objective is to minimize the cross entropy between the 
corresponding reference label ( )iy  and the predict label ( )ˆ iy . The objective loss function is 
calculated as: 
 

( ) ( )( )( ) ( )( ) ( )( )
j

ˆ ˆ=- log 1 log(1 )
i ii i

j j j j
i

Loss y y y yσ σ+ − −∑∑  (1) 

3.2 Model Architecture 
Fig. 1 show our proposed model architecture, which includes backbone network and parallel 
dual-scale sub-networks, the information fusion layer and classifier layer. Firstly, backbone  
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Fig. 1. Diagram of the proposed model architecture. 
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network is utilized to learn low-level ECG signal information, which makes the subsequent 
sub-networks get a better feature representation. Then, two parallel sub-networks with 
different scale filters are used to learn the high-level ECG signal information. To emphasize 
the representative local spatial and temporal features, we add a spatial-temporal attention to 
each sub-network. In addition, the global features of the ECG signal are also important for 
ECG classification. Therefore, the global pooling is used at each sub-network followed by 
spatial-temporal attention to squeeze the features dimension and obtained the global 
information. Finally, the various types of information of the two sub-networks is fused 
effectively using concatenation operation. 

3.2.1 The Backbone Network 
The backbone network is utilized to obtain low-level features effectively from the ECG signal. 
There are a 1-D convolutional layer and a pooling layer in the backbone network. 32 
convolution kernels are used in 1-D convolutional layer. The size of kernel is 7. The size of 
stride is 1. Batch normalization (BN) can improve the training speed and help the model 
converge faster. Therefore, we add a BN layer after 1-D convolutional layer. A rectified linear 
units (ReLU) activation function is employed to introduce a nonlinearity, and its non-linear 
function is defined as ( ) ( )max 0,x xσ = . It is added after BN layer. The pooling layer adopts 
max-pooling for downsampling. The filter of size is 3. The size of stride is 2. For input ECG 
recording ( ) { }, 1, 2,...,ix i m∈ , the output af  of backbone network is defined as follows:  
 

( )( );i
a a af Net x θ=

 
(2) 

 
where af  denotes the characteristic vector of raw input ( )ix . aNet  represents the backbone 
network and aθ  represents the network parameter. 

3.2.2 The Parallel Dual-scale Sub-networks 
Two parallel sub-networks receive the features obtained by the backbone network and get 
deeper feature representations. Each sub-network is consisted of a 1-D convolutional layer, 5 
1-D convolutional blocks, a spatial-temporal attention and one global pooling layer. The 
convolution of two sub-networks uses different sizes convolutional filters, which enhance 
features diversity. The convolutional block adopts the shortcut connections. With the network 
depth increasing, the gradient will gradually disappear, which results in the weight of the 
previous network layer cannot be updated. The performance of the model will decline. The 
shortcut connections of the convolutional block improve backpropagation in deep neural 
networks and solve network optimization problems. The accuracy of model will improve. To 
merge the local spatial and temporal information, we use the spatial-temporal attention after 
each sub-network. Finally, global pooling layer squeezes the features dimension and obtains 
the global information. The output of the sub-networks is { }, 1, 2

jbf j∈ . 
 

( );
j j jb b a bf Net f θ=

 (3) 

 
1-D convolutional layer and 1-D convolutional block: The dual-scale sub-networks use 3 
and 7 convolutional filters respectively. 1-D convolutional layer is followed by 1-D 
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convolutional block. There are 2 convolutional layers, which is preceded by BN, ReLU 
activation function and dropout. The second convolutional layer is followed by max pooling. 
Max pooling can subsample and make the representation become approximately invariant. It 
reduces dimension of the input by half and obtain the maximum values in the local field. The 
filter of size is 2. The size of stride is 2. The shortcut connections also contain a max pooling, 
which is used to subsample and adjust size of feature. The filter of size is 2. The final 
convolutional block is given to a BN and ReLU activation function before spatial-temporal 
attention. We add dropout after ReLU activation function to reduce over overfitting and to 
accelerate the training procedure. 
The spatial-temporal attention: The spatial-temporal attention is utilized to pay attention to 
representative local spatial-temporal features from ECG signal. The spatial attention can 
generate the weight of feature channels, which adaptively focuses on channels containing 
abnormal features and avoids irrelevant channels. The temporal attention is utilized to obtain 
relatively important time series information, which make the network to emphasize the 
essential time periods features.  

Fig. 2 shows spatial attention mechanism. Global average-pooling and global max-pooling 
can reduce the dimension of the feature map and use different ways to separately aggregate 
input features of long sequence features of each channel. ECG signal anomalies can be 
classified into intermittent and continuous anomalies [16]. Global average-pooling is suitable 
for capturing anomalies occurring in long sequences by average operation. Global max-
pooling can effectively capture intermittent anomalies in the ECG signal. The features 
compressed by global average-pooling and global max-pooling are fed into two shared fully 
connected layers. Then two channel weight vectors are generated by nonlinear operations. Two 
channel weight vectors are combined through element-wise addition. Then the spatial attention 
weights are obtained, which reflect the relative importance between channels. The relative 
important channels will be given the larger weights. The relative unimportant channels will be 
given the smaller weights. A sigmoid function is applied to scale the weights in 0-1. Finally, 
the spatial attention weight multiplies by the output of 1-D convolutional block layer, which 
help the network emphasize significant channel features. For input [ ] 1

1 2, , , , L
c iS s s s s R ×= ⋅⋅ ⋅ ∈ , 

C  represents the number of channels and L  represents the temporal length of S .  
 

( )( )avg f AvgPz SF ool=  (4) 

( )( )max f MaxPz SF ool=  (5) 

1 max( ,..., ) ( )C avgz z z z zσ= +  (6) 
 

Input features
Global MaxPool

Global AvgPool
Fully  Connected Layer Sigmoid+

Spatial 
attention 
weights

 

Fig. 2. Diagram of spatial attention mechanism. 
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where ( )AvgPool ⋅  denotes global average pooling operation, ( )MaxPool ⋅  denotes global 
maximum pooling operation, fF  denotes dense layers and non-linear operation and σ  
denotes sigmoid operation. z  represents the contribution of different the channel. Finally, the 
spatial attention weight z  is used to multiplies S  to generate Ŝ . 
 

[ ]1 1 2 2
ˆ , ,..., C CS z S z s z s z s= ⊗ =  (7) 

 
Fig. 3 shows temporal attention mechanism. The temporal attention mechanism is used to 

encode the relative importance between the time periods. Global average-pooling and global 
max-pooling adopt different methods to aggregate channel information at each time of the 
feature map, respectively. The features compressed by global average-pooling and global max-
pooling are concatenated and fed into one convolution layer. Then temporal attention weights 
are generated, which reflect the relative importance between time periods. Then, A sigmoid 
function is applied to scale the weights in 0-1. Finally, the temporal attention weight multiplies 
by the output of spatial attention, which makes the network enhance important time features. 
For input [ ] 1

1 2, ,..., , C
L iT t t t t R ×= ∈ , L  represents the length of time T . 

 
[ ]( )1( ,..., ) ( ); ( )L cn n n F AvgPool T MaxPool T=  (8) 

 
where ( )AvgPool ⋅  denotes global average pooling operation, ( )MaxPool ⋅  denotes global 
maximum pooling operation and ( )cF T  denotes the convolution operation. The convolution 
kernel size is 7. n  indicates the contribution of different features in the time periods. Finally, 
the temporal attention weight is utilized to multiplies T  to get T̂ . 
 

( ) ( ) ( )1 1 2 2
ˆ , ,..., L LT n T n t n t n tσ σ σ= ⊗ =     (9) 

 

Input features

Global MaxPool

Global AvgPool
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Fig. 3. Diagram of spatial attention mechanism. 

 
The global pooling layer: The feature dimensions extracted from convolutional block of two 
sub-networks are different, which is not conducive to feature fusion by subsequent 
concatenation operations. In addition, global feature extraction from signal is important for 
ECG classification. Therefore, we add a global pooling layer after the spatial-temporal 
attention of each sub-network. Global pooling layer can compress the feature dimension and 
obtain the global features representation. Global pooling includes global max-pooling and 
global average-pooling. The former is more suitable for our model architecture and enables 
our model to achieve greater classification effect. Since we use global average-pooling. It is 
defined as follows: 
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( ) 1ˆ ˆ
L

avg i
i

g T t
L

= ∑  (10) 

 
where avgg  denotes global average-pooling operation. 

3.3 The information fusion and classifier layer 
For learning complementary information obtained by dual-scale sub-networks and obtaining 
robust features for classification. We fuse features extracted from dual-scale sub-networks by 
the concatenation operation. The final feature F  can be obtained using the following 
calculation: 
 

1 2
( , )b bF Cat f f=  (11) 

 
where 

1 2
,b bf f  denote the output of dual-scale sub-networks. Cat  represents the concatenation 

operation. 
Finally, we use a fully connected layer as a classifier, which consists of c  neurons. The 

output of classifier is mapped by a sigmoid activation function to get probability 
( )1,..., cp p p= , where c  represents the quantity of classes and { }, 1, 2,...,jp j c∈  represents the 

probability that ( )ix  has the label ˆ jy . We use θ  to obtain ( ) ( ) ( )
1 cˆ ˆ ˆ,...,i i iy y y =  

, which is the final 

prediction. We set =0.5θ  
1,   if  p

ˆ
0,  otherwise

j
jy

θ≥= 


 (12) 

 

4. Experiment 

4.1 Data Source 
The experimental ECG dataset is PTB-XL dataset [17]. This dataset includes 21837 12-lead 
ECG recordings, which come from 18885 patients with 52% male and 48% female. ECG 
recordings has 100 Hz sampling frequency and 500 Hz sampling frequency. The duration of 
the ECG recording is 10 seconds. The labels for ECG recording are manually annotated by 
ECG experts. It comprises 71 distinct ECG statements that are categorized into 44 diagnostic 
statements, 19 form statements, and 12 rhythm statements. The diagnostic statements are 
further divided into diagnostic_superclass and diagnostic_subclass. Every ECG recording may 
have multiple statements. In our experiments, we use the 100 Hz sampling frequency and 5 
diagnostic_superclass labels, which consist of NORM, CD, MI, and STTC. The distribution 
of diagnostic_superclasses is showed in Fig. 4. Fig. 5 shows visualization of an example of a 
12-lead ECG recording, which contain MI and STTC. 
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Fig. 4. The distribution of diagnostic_superclasses in PTB-XL dataset. 

 
Fig. 5. An example of 12-lead ECG record. 

 

4.2 Experimental Setup 
All ECG recordings in PTB-XL dataset are standardized with a zero mean and unit variance. 
We split the ECG recording into ten folds. Every ECG recording belongs to one of 10 folds. 
We use 1 to 8 folds ECG recordings as train set. The remaining two folds is utilized to validate 
model and test model respectively. All experiments are run on a Nvidia GTX 2080Ti 24GB 
GPU machine. We used Cross-Entropy loss and Adam optimizer for training the model. The 
maximum number of epochs is 30. The batch size is 32. We applied a learning rate decay 
strategy in which we decreased the learning rate by a factor of 10 every 10 epochs. The initial 
learning rate was set to 0.01. 

4.3 Evaluation Metrics 
Since ECG recordings have more than one statement, which correspond to multiple labels. We 
evaluate performance of our proposed model using multiple label classification metric, 
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including macro ROC-AUC, mean accuracy, and maximum F1 score [18]. For the thj  disease 
( )i

jy , jTP , jFP  , jTN , jFN  are used to evaluate binary classification performance. ECG 
recordings with the thj  disease is positive, while ECG recordings without the thj  disease are 
negative. jTP  denotes the quantity of ECG recordings that belong to true positive, jFP  denotes 
the quantity of ECG recordings that belong to false positive, jTN  denotes the quantity of ECG 
recordings that belong to true negative, jFN  denotes the quantity of ECG recordings that 
belong to false negative. Based jTP , jFP  , jTN  , jFN , the F1 score and mean accuracy can be 
calculated as follows: 

( ) ( )

( )
1

ˆ1Pr ec
ˆ

i i
N

i
i

y y
ision

N y=

∩
= ∑  

(13) 

( ) ( )

( )
1

ˆ1Re
i i

N

i
i

y y
call

N y=

∩
= ∑  

(14) 

2 Pr ec Re1 
Pr ec Re

ision callF score
ision call

⋅ ⋅
=

+
 (15) 

( ) ( )

1 1
  1 1A

N C
i i

j
i j

y yMean ccuracy
C N = =

= =∑∑ 

 

 

 
(16) 

4.4 Results and Discussion 
To evaluate of our proposed model, we compare our proposed model with other reference 
models Mousavi et al. [19], ECGNet [4], Zhang et al. [20], Wang et al. [21]. Mousavi et al. 
[19] propose a sequence-to-sequence model for ECG classification, which includes three 
convolutional layers and the bidirectional RNN. The model proposed in the literature [4] 
combines CNN and LSTM. Features are obtained separately using CNN and LSTM. Finally, 
the features are fused for ECG classification. Zhang et al. [20] propose a CNN model with 
residual blocks. Wang et al. [21] propose a multiscale model. The backbone network uses the 
traditional 34-layer residual network. Table 1 shows comparison results. Our model 
outperforms other four models. Specifically, our model achieves 0.9307 on macro ROC-AUC, 
which outperforms the other models about 6.53%, 2.06%, 1.78%, 1.33% respectively. Our 
model achieves 89.11 on Mean Accuracy, which outperforms the other models about 4.92, 
1.76, 1.63, 1.39, respectively. Our model achieves 0.8152 on F1 score (Max), which 
outperforms the other models 8.37%, 4.4%, 3.04%, 2.56%, respectively. Fig. 6 shows a 
performance of class-wise ROC-AUC with other four models. Our model outperforms others 
models in ROC-AUC for CD, HYP, MI, NORM. Fig. 7 shows a performance of class-wise 
accuracy with other four models. The accuracy of our models in CD, MI, NORM and STTC 
is superior to all other models. 
 

Table 1. Comparison results of our model with related works 
 Macro ROC-AUC Mean Accuracy F1 score (Max) 

Mousavi et al. [19] 0.8654 84.19 0.7315 
ECGNet [4] 0.9101 87.35 0.7712 

Zhang et al. [20] 0.9129 87.48 0.7848 
Wang et al. [21] 0.9174 87.72 0.7896 

STADSNet 0.9307 89.11 0.8152 
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Fig. 6. Performance of class-wise ROC-AUC 

 

 
Fig. 7. Performance of class-wise accuracy 

 
Table 2 and Table 3 show ROC-AUC and accuracy of model trained on single-lead ECG, 

respectively. The results show that using 12-lead ECG achieves the better performance 
compared to using single-lead ECG. When model only use single-lead ECG, the macro ROC-
AUC of the model decreases by 6.38%-13.47% compared with the 12-lead ECG. The mean 
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accuracy of the model trained on the single-lead ECG decreases by 4.19-7.95. When only 
using single-lead ECG, the model has the best performance in lead aVR, V5 and V6. The 
macro ROC-AUC achieves 0.8679, 0.8639 and 0.8669, respectively. The mean accuracy 
achieves 84.78, 84.92 and 84.88, respectively. The ROC-AUC of STTC achieves 0.9101, 
0.9190 and 0.9125, respectively. The accuracy of HYP achieves 89.27, 90.57 and 90.15, 
respectively. When only using single-lead aVR, the ROC-AUC of STTC achieves 0.9101. 
This indicates that lead aVR, V5 and V6 are very important for the diagnosis of some diseases. 
When only using single-lead lead III, the model has the worst performance. Specifically, 
macro ROC-AUC is 0.7960 and mean accuracy is 81.16.  

 
Table 2. Performance of ROC-AUC trained on single-lead ECG  

 CD HYP MI NORM STTC Macro ROC-AUC 
I 0.8221 0.8163 0.7908 0.8881 0.8767 0.8388 
II 0.8757 0.8005 0.8281 0.9023 0.8836 0.8580 
III 0.8147 0.7645 0.8228 0.8442 0.7339 0.7960 

aVR 0.8700 0.8318 0.8202 0.9074 0.9101 0.8679 
aVL 0.8208 0.7913 0.8014 0.8719 0.8046 0.8180 
aVF 0.8464 0.7848 0.8305 0.8743 0.8088 0.8290 
V1 0.8687 0.8150 0.8010 0.8511 0.7851 0.8242 
V2 0.8417 0.7584 0.8013 0.8305 0.7952 0.8054 
V3 0.8242 0.7673 0.8186 0.8700 0.8392 0.8238 
V4 0.8220 0.8247 0.7968 0.8945 0.8946 0.8465 
V5 0.8340 0.8545 0.8029 0.9092 0.9190 0.8639 
V6 0.8506 0.8493 0.8133 0.9087 0.9125 0.8669 
All 0.9240 0.9177 0.9309 0.9492 0.9319 0.9307 

 
Table 3. Performance of accuracy trained on single-lead ECG  

 CD HYP MI NORM STTC Mean Accuracy 
I 84.56 89.18 78.41 80.12 83.63 83.18 
II 86.92 88.26 80.07 81.65 84.88 84.36 
III 84.37 88.40 80.58 75.13 77.30 81.16 

aVR 85.71 89.27 80.31 82.29 86.32 84.78 
aVL 85.71 89.00 79.20 77.76 79.38 82.21 
aVF 84.28 88.26 81.78 78.78 80.54 82.73 
V1 86.22 88.58 79.75 75.03 78.32 81.58 
V2 85.30 88.21 83.36 74.34 80.17 82.27 
V3 84.88 88.12 83.26 77.67 81.00 82.99 
V4 83.87 88.95 80.21 80.40 85.02 83.69 
V5 84.93 90.57 79.84 81.92 87.33 84.92 
V6 85.58 90.15 79.33 82.62 86.73 84.88 
All 89.92 91.96 87.98 86.50 89.18 89.11 

 
The performance of the network is influenced by the size of the convolutional kernel. To 

analyze the impact of different convolution kernel sizes, we set different convolution kernel 
sizes for two sub-networks. The convolution kernels of two subnetworks are selected in 3, 5, 
and 7, respectively. As can be seen from the Table 4, when the kernel size of the two sub-
networks is 3 and 7 respectively, model achieves the best Macro ROC-AUC performance. 
When the kernel size of the two sub-networks is 3, 5, respectively, the performance of the 
model drops. The worst performance is obtained when the kernel size of the two sub-networks 
is 5 and 7. In addition, the performance of the model is worse when two sub-networks use the 
same convolutional kernel size of (3, 7) compared to using different kernel sizes. 
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Table 4. Comparison of different convolution kernel size models 

 STDSNet35 STDSNet37 STDSNet57 STDSNet33 STDSNet77 
Macro 

ROC-AUC 
0.9287 0.9307 0.9258 0.9274 0.9262 

F1 score 
(Max) 

0.8154 0.8152 0.8109 0.8129 0.8102 

Mean 
Accuracy 

89.26 89.11 89.13 89.10 88.98 

 
We conducted ablation experiments to analyze the impact of dual-scale network structure 

and spatial-temporal attention. We compared the classification results of our model, our model 
without spatial-temporal attention, and single-scale network. The single-scale network 
includes a backbone network, a sing-scale sub-network, a spatial-temporal attention, and the 
global pooling layer. The convolution kernel size of sub-network is 3. Table 5 shows the 
ablation results. We can observe that the dual-scale model outperforms the single-scale model. 
Specifically, the macro ROC-AUC increases from 0.9276 to 0.9307, F1 score (Max) increases 
from 0.8082 to 0.8152 and mean Accuracy increases from 89.05 and 89.11, respectively. The 
performance of the model can also be enhanced by adding spatial-temporal attention. 
Specifically, macro ROC-AUC increases from 0.9272 to 0.9307, F1 score (Max) increases 
from 0.8133 to 0.8152 and mean accuracy increases from 89.05 and 89.01, respectively. 

 
Table 5. Ablation experiments results of proposed model 

 Macro 
ROC-AUC 

F1 score (Max) Mean Accuracy 

w/o spatial-temporal attention 0.9276 0.8082 89.05 
Single-scale network 0.9272 0.8133 89.01 

Ours 0.9307 0.8152 89.11 

5. Conclusion 
In this paper, we propose a dual-scale network with spatial-temporal attention for ECG 
classification. Different from the previous single-scale network, we utilize a dual-scale 
network for feature extraction from ECG signal. We also employ a spatial-temporal attention 
to learn the appropriate weights for different channels and temporal feature, which facilitates 
focusing on representative local spatial and temporal features. Finally, global pooling is also 
used to further obtain global features. We use PTB-XL dataset to evaluate the proposed model, 
which achieves 0.9307 on macro ROC-AUC, 0.8152 on F1 score (Max) and 89.11 on mean 
accuracy. It outperforms several existing models. To evaluate the impact of the proposed 
improvements, we also performed an ablation study. Ablation experimental results show that 
the two improvements proposed in this paper can improve the performance of the model. 
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