• Title/Summary/Keyword: signal energy

Search Result 1,911, Processing Time 0.028 seconds

Highly Sensitive Partial Discharge Sensor with Remote Monitoring Capabilities (원격감시 기능을 갖는 고감도 부분방전센서)

  • Choi, Kyoo-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Remote monitoring partial discharge sensor, equipping with hybrid filter combining optical and electrical noise reduction capabilities and with signal integrating function to calculate total arc energy, was investigated. Hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal integrating function showed selective detection capability corresponding to different arc energy levels, while convention arc sensor had difficulty to discriminate arc energy level due to bursty arc waveform and peak level detection characteristics. The sensor showed possibility for application to remote monitoring partial discharge sensor, since it detected arc energy level corresponding to normal open and close discharge in low voltage 100A MCCB at 2m distance.

A Simple Pitch Tracking Algorithm based on the Energy Operator (에너지 연산자에 기초한 간단한 피치 추적 방법)

  • Tai-Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • A new method for the estimation of pitch-frequency contour of voiced speech is presented. The method is based on the double application of Kaiser's energy operator[1], which has the capabilities of extracting amplitude and frequency of a sinusoidal waveform. According to the modulation model, a vowel can be represented by a combination of damped sinusoids representing formants, modulated by pitch pulses. Therefore, the amplitude envelope of each of the components will give a pitch-like waveform and the pitch can be obtained by averaging the frequencies of this waveform. The first part is the same as Gopalan's approach[9], but by substituting the LPC based spectral analysis with the second application of energy operator, the algorithm becomes very simple and can be processed on-line. Although the estimation is rather coarse, the suggested algorithm can be useful for getting a general sketch of pitch contour on-line.

  • PDF

Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments (잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출)

  • Park, Yun-Sik;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.97-103
    • /
    • 2012
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. Global speech absence probability (GSAP) derived from likelihood ratio (LR) based on the statistical model is widely used as the feature parameter for VAD. However, the feature parameter based on conventional GSAP is not sufficient to distinguish speech from noise at low SNRs (signal-to-noise ratios). The presented VAD algorithm utilizes GSAP based on Teager energy (TE) as the feature parameter to provide the improved performance of decision for speech segments in noisy environment. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

Excitation Energy Migration in Multiporphyrin Arrays

  • Hwang, In-Wook;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.19-31
    • /
    • 2005
  • During the last decade, the exploration of nanoscale device and circuitry based on molecules has gained increasing interest. In parallel with this, considerable effort is being devoted to the development of molecular photonic/electronic materials based on various porphyrin arrays. This involves light as an input/output signal and excitation energy migration as a mechanism for signal transmission. Absorption of a photon at the light collector end of the porphyrin array yields the excited state, which migrates among the intervening pigments until reaching the emitter, whereupon another photon is emitted. As a consequence, it is relevant to understand the excitation energy transfer (EET) processes occurring in various forms of porphyrin arrays for the applications as artificial light harvesting arrays and molecular photonic/electronic wires. Since the excitonic (dipole) and electronic (conjugation) couplings between the adjacent porphyrin moieties in porphyrin arrays govern the EET processes, we have characterized the EET rates of various forms of multiporphyrin arrays (linear, cyclic, and box) based on various time-resolved spectroscopic measurements. We believe that our observations provide a platform for further development of molecular photonic/electronic materials based on porphyrin arrays.

Feasibility study of multiplexing method using digital signal encoding technique

  • Kim, Kyu Bom;Leem, Hyun Tae;Chung, Yong Hyun;Shin, Han-Back
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2339-2345
    • /
    • 2020
  • Radiation imaging systems consisting of a large number of channels greatly benefit from multiplexing methods to reduce the number of channels with minimizing the system complexity and development cost. In conventional pixelated radiation detector modules, such as anger logic, is used to reduce a large number of channels that transmit signals to a data acquisition system. However, these methods have limitations of electrical noise and distortion at the detector edge. To solve these problems, a multiplexing concept using a digital signal encoding technique based on a time delay method for signals from detectors was developed in this study. The digital encoding multiplexing (DEM) method was developed based on the time-over-threshold (ToT) method to provide more information including the activation time, position, and energy in one-bit line. This is the major advantage of the DEM method as compared with the traditional ToT method providing only energy information. The energy was measured and calibrated by the ToT method. The energy resolution and coincidence time resolution were observed as 16% and 2.4 ns, respectively, with DEM. The position was successfully distributed on each channel. This study demonstrated the feasibility that DEM was useful to reduce the number of detector channels.

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.

Technical Status of LED Traffic Signals made in Korea (국내의 LED 교통신호등의 기술현황 분석연구)

  • Jeong, Hak-Geun;Jung, Bong-Man;Han, Su-Bin;Park, Suk-In;Kim, Kyu-Deok;Yu, Seong-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.171-174
    • /
    • 2004
  • Concerning Korean energy consumption, 20% of the total electrical energy (96% is now exported) is consumed in lighting area. Accordingly, it is one of the most important governmental policies to efficiently utilize electricity due to development and application of high-efficiency lighting equipment. In Korea, widely-built traffic signals employ an incandescent and are of 100W/300 mm, and 280,080set/801,932lamps have been installed and operated by 1999. Of them, 58%(161,181set), 25%(69,655set) and 18%(49,244set) correspond to traffic signals, pedestrian signals and other supplementary signals respectively. It was estimated that electrical energy consumed 28MW instantaneously, 245GWH annually. On the other hand, the LED traffic signal is expected to be a future traffic signal since if traffic signals are replaced by LEDs, energy saving effect of 85% and drop of 75% in maintenance fee will be obtained. In this paper, the performance and characteristics of many LED traffic signals made in Korea are summarized in order to reform Korean standard of LED traffic signals.

  • PDF

Design and Implementation of Distributed Charge Signal Processing Software for Smart Slow and Quick Electric Vehicle Charge

  • Chang, Tae Uk;Ryu, Young Su;Song, Seul Ki;Kwon, Ki Won;Paik, Jong Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1674-1688
    • /
    • 2019
  • As environmental pollution and fossil fuel energy problems from fuel vehicle have occurred, the interest of electric vehicle(EV) has increased. EV industry and energy industry have grown dynamically in these days. It is expected that the next generation of primary transportation will be EV, and it is necessary to prepare EV infra and efficient energy management such as EV communication protocol, EV charge station, and smart grid. Those EV and energy industry fields are now on growth. Also, the study and development of them are now in progress. In this paper, distributed charge signal processing software for smart slow and quick EV charge is proposed and designed for dealing with EV charge demand. The software consists of smart slow and quick EV charge schedule engine and EV charge power distribution core. The software is designed to support two charge station types. One is normal EV charge station and the other is bus garage EV charge station. Both two types collect the data from EV charge stations, and then analyze the collected data. The software suggests optimized EV charge schedule and deliveries EV charge power distribution information to power switchboard system, and the designed software is implemented on embedded system. It is expected that the software provides efficient EV charge schedule.

Comparison of Signal Powers Generated with Metal Hammer Plate and Plastic Hammer Plate (금속 및 플라스틱 재질의 해머 타격판에 의해 발생된 신호의 파워 비교)

  • Kim, Jin-Hoo;Lee, Young-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.282-288
    • /
    • 2011
  • One of the most challenging issues facing shallow seismic survey is how to generate large amplitude of high frequency signal with small seismic sources. We tested the performance of the most commonly used shallow seismic source, hammer, with four plates: PE, nylon, aluminum, and steel plates. We compared their signal powers in terms of impulsive forces, accelerations, and ground vibration velocities caused by hammer impacts. According to a previous work, hammer blowing to an aluminum plate would generate the largest amplitude among four combinations. However, it was found in this experimental research that aluminum plate delivers seismic wave energy to the ground less than that generated with steel or PE plate. Even though the amplitude is relatively small, plastic plates could provide seismic pulses of 180 ~ 200 Hz in the bandwidth, and it seems to be very hard to generate seismic energy over the frequency of 250 Hz.