• Title/Summary/Keyword: signal energy

Search Result 1,898, Processing Time 0.029 seconds

Detection of Underwater Transient Signals Using Noise Suppression Module of EVRC Speech Codec (EVRC 음성부호화기의 잡음억제단을 이용한 수중 천이신호 검출)

  • Kim, Tae-Hwan;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.301-305
    • /
    • 2007
  • In this paper, we propose a simple algorithm for detecting underwater transient signals on the fact that the frequency range of underwater transient signals is similar to audio frequency. For this, we use a preprocessing module of EVRC speech codec that is the standard speech codec of the mobile communications. If a signal is entered into EVRC noise suppression module, we can get some parameters such as the update flag, the energy of each channel, the noise suppressed signal, the energy of input signal, the energy of background noise, and the energy of enhanced signal. Therefore the energy of the enhanced signal that is normalized with the energy of the background noise is compared with the pre-defined detection threshold, and then we can detect the transient signal. And the detection threshold is updated using the previous value in the noisy period. The experimental result shows that the proposed algorithm has $0{\sim}4% error rate in the AWGN or the colored noise environment.

Instantaneous Amplitude and Frequency Estimator Using the Symmetric Higher Order Differential Energy Operator (대칭구조를 갖는 고차의 미분 에너지함수를 이용한 순간진폭 및 순간주파수 추정기)

  • Iem, Byeong-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1193-1198
    • /
    • 2012
  • An instantaneous amplitude (IA) estimator using the symmetric higher order differential energy operator is proposed. The amplitude estimator and the instantaneous frequency (IF) estimator based on the symmetric higher order differential energy operator coincide with the analyzed signal in time, and they show better estimation results than the IA and IF based on the higher order differential energy operator. Various IF and IA estimators are applied to AM-FM signals for the performance comparison. Among the IF and IA estimators, the IF and IA estimators based on the symmetric higher order energy operator show the best estimation accuracy. Then, the IA and IF estimators are applied to the distorted power line signal to show their usefulness as power disturbance detectors.

Energy-Efficiency Power Allocation for Cognitive Radio MIMO-OFDM Systems

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.686-689
    • /
    • 2014
  • This paper studies energy-efficiency (EE) power allocation for cognitive radio MIMO-OFDM systems. Our aim is to minimize energy efficiency, measured by "Joule per bit" metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non-convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy-efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.

Bandpass Discrete Prolate Spheroidal Sequences and Its Applications to Signal Representation and Interpolation

  • Oh, Jin-Sung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.70-76
    • /
    • 2013
  • In this paper, we propose the bandpass form of discrete prolate spheroidal sequences(DPSS) which have the maximal energy concentration in a given passband and as such are very appropriate to obtain a projection of signals. The basic properties of the bandpass DPSS are also presented. Assuming a signal satisfies the finite time support and the essential band-limitedness conditions with a known center frequency, signal representation and interpolation techniques for band-limited signals using the bandpass DPSS are introduced where the reconstructed signal has minimal out-of-band energy. Simulation results are given to present the usefulness of the bandpass DPSS for efficient representation of band-limited signal.

Comparison of Signal Powers Generated with Different Shapes of Hammer Plates

  • Jeong, Ji-Hyun;Kim, Jin-Hoo
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.395-400
    • /
    • 2012
  • One of the main problems concerning the shallow seismic survey is how to generate high frequency signals with large amplitudes using small seismic sources. If one could focus the seismic energy in the direction of the survey line, it will be much helpful in identifying the first break. In this research, we have used hammer as an impulsive source and compared the signal powers generated by different shapes of the hammer plates: circular, square, and rectangular. The experiment was conducted by calculating the power spectral density function to compare the frequency spectrum and signal power. In the direction perpendicular to the long side of the rectangular plate, the largest seismic energy with the highest frequency was achieved even with the same weights of hammer plates. Our conclusion is that it is more efficient to use a rectangular plate than a circular (or square) one when conducting a 2-D shallow seismic survey.

A Pilot Study on Nondestructive Assessment of Compressive Strength Using Impact Force Response Signal (충격력 응답신호를 이용한 비파괴 압축강도 산정에 관한 기초연구)

  • Son, Moorak;Choi, Yoonseo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.5-9
    • /
    • 2019
  • This paper is to provide the results of a pilot study of the usability and possibility of impact force response signal induced from impacting an object for the assessment of compressive strength of various materials (rock, concrete, wood, etc.) nondestructively. For this study, a device was devised for impacting an object and measuring the impact force. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Wood and rock test specimens for different strengths were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total impact force signal energy which is assessed from integrating the impact force response signal induced from impacting an object.

Receiving Signal Level Measurement Based Weighting Method for Broadband Energy Detection (광대역 에너지 탐지를 위한 수신신호 강도 크기기반 가중치인가 기법)

  • Kang, TaeSu;Kim, Youngshin;Kim, Yong Guk;Moon, Sang-Taeck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.532-540
    • /
    • 2013
  • In this paper, we propose the modified SED (Subband Energy Detection) which can assign weights adapting to the receiving signal level for the broadband energy detection in the passive SONARs. SED which is one of the broadband processing mainly employed by passive SONARs to detect a target is more robust against interference like multi signals or a clutter than CED (Conventional Energy Detection), but it degrades detection performance to assign weights independent of extracted extrema level of the receiving signal. Therefore, in this paper, the weighting method which can efficiently assigns rewards or penalties adapting to extracted extrema level of the receiving signal is proposed. In order to evaluate the performance of proposed method, we conducted experiments by using simulation and real ocean acoustic signal which is acquired from Yellow Sea. From the experiments, our proposed method has shown better performance than conventional SED.

Acoustic Metal Impact Signal Processing with Fuzzy Logic for the Monitoring of Loose Parts in Nuclear Power Plang

  • Oh, Yong-Gyun;Park, Su-Young;Rhee, Ill-Keun;Hong, Hyeong-Pyo;Han, Sang-Joon;Choi, Chan-Duk;Chun, Chong-Son
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.5-19
    • /
    • 1996
  • This paper proposes a loose part monitoring system (LPMS) design with a signal processing method based on fuzzy logic. Considering fuzzy characteristics of metallic impact waveform due to not only interferences from various types of noises in an operating nuclear power plant but also complex wave propagation paths within a monitored mechanical structure, the proposed LPMS design incorporates the comprehensive relation among impact signal features in the fuzzy rule bases for the purposes of alarm discrimination and impact diagnosis improvement. The impact signal features for the fuzzy rule bases include the rising time, the falling time, and the peak voltage values of the impact signal envelopes. Fuzzy inference results based on the fuzzy membership values of these impact signal features determine the confidence level data for each signal feature. The total integrated confidence level data is used for alarm discrimination and impact diagnosis purposes. Through the perpormance test of the proposed LPMS with mock-up structures and instrumentation facility, test results show that the system is effective in diagnosis of the loose part impact event(i.e., the evaluation of possible impacted area and degree of impact magnitude) as well as in suppressing false alarm generation.

  • PDF

Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis (회전기계 결함신호 진단을 위한 신호처리 기술 개발)

  • Ahn, Byung-Hyun;Kim, Yong-Hwi;Lee, Jong-Myeong;Lee, Jeong-Hoon;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.555-561
    • /
    • 2014
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet for the rotating machinery diagnosis. Therefore, in this paper two methods which are processed by Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94 % classification of averaged accuracy with the parameter of the RBF 0.08, 12 feature selection.

The Influence of Energy Density upon Detection Time of Information Signal in AF Track Circuit (AF궤도회로에서 에너지 밀도가 정보신호 검출시간에 미치는 영향)

  • Kim, Min-Seok;Hwang, In-Kwang;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1146-1151
    • /
    • 2011
  • There are two methods for train control in information transmission by using track circuit system and installing wayside transmitter. Information signal is transmitted to the on-board antenna by using rails. Continuous information about train intervals, speed and route is received by on-board antenna in AF track circuit system. The information signal is included with carrier wave and received by magnetic coupling in the on-board antenna. Therefore, it is important to define standard current level in the AF track circuit system. When current flowed to rails is low, magnetic sensors are not operated by decreasing magnetic field intensity. Hence, SNR is decreased because electric field intensity is decreased. When the SNR is decreased, there is the serious influence of noise upon demodulation. So, the frequency of information signal is not extracted in frequency response. Thus, it is possible to happen to train accident and delay as the information signal is not analyzed in the on-board antenna. In this paper, standard energy density is calculated by using Parseval's theory in UM71c track circuit. Hence, detection time of information signal is presented.