• Title/Summary/Keyword: signal decomposition

Search Result 394, Processing Time 0.025 seconds

Wavelet Transform Based Deconvolution for Improvement of Time-Resolution of A-Scan Ultrasonic Signal (A-Scan 초음파 신호의 시간분해능 향상을 위한 웨이브렛 해석 기반 디컨벌루션 기법)

  • Ha, Job;Jhang, Kyung-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.84-89
    • /
    • 2001
  • Ultrasonic pulse echo method comes to be difficult to apply to the multi-layered structure with very thin layer, because the echoes from the top and the bottom of the layer are overlapped. Conventionally method, deconvolution technique has been used for the decomposition of overlapped UT signals, however it has disabilities when the waveform of the transmitted signal is distorted according to the propagation. In this paper, the wavelet transform based deconvolution (WTBD) technique is proposed as a new signal processing method that can decompose the overlapped echo signals in A-Scan signal with superior performances compared to the conventional deconvolution technique. Performances of the proposed method are shown by through computer simulations using model signal with noise and are demonstrated by through experiments for the fabricated acryl rod with a thin steel plate bonded to it.

  • PDF

Mode-by-mode evaluation of structural systems using a bandpass-HHT filtering approach

  • Lin, Jeng-Wen
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.697-714
    • /
    • 2010
  • This paper presents an improved version of the Hilbert-Huang transform (HHT) for the modal evaluation of structural systems or signals. In this improved HHT, a well-designed bandpass filter is used as preprocessing to separate and determine each mode of the signal for solving the inherent modemixing problem in HHT (i.e., empirical mode decomposition, EMD, associated with the Hilbert transform). A screening process is then applied to remove undesired intrinsic mode functions (IMFs) derived from the EMD of the signal's mode. A "best" IMF is selected in each screening process that utilizes the orthogonalization coefficient between the signal's mode and its IMFs. Through mode-by-mode signal filtering, parameters such as the modal frequency can be evaluated accurately when compared to the theoretical value. Time history of the identified modal frequency is available. Numerical results prove the efficiency of the proposed approach, showing relative errors 1.40%, 2.06%, and 1.46%, respectively, for the test cases of a benchmark structure in the lab, a simulated time-varying structural system, and of a linear superimposed cosine waves.

A Fast Fault Location Method Using Modal Decomposition Technique of Traveling Wave (진행파 모드 분해 기법을 이용한 고속 고장점 표정)

  • Hong, Jun-Hee;Cho, Kyung-Rae;Kim, Sung-Soo;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.95-98
    • /
    • 1995
  • In this paper, a good fault location algorithm will be presented, which uses novel signal processing techniques and takes a new paradigm to overcome some drawbacks of the conventional methods. The main feature of the method is that it uses the high frequency components in fault signal and considers the influence of the source network by using a traveling wave concept.

  • PDF

Wavelet Image Coding with Optimized Zerotree Quantization (최적화된 제로트리 양자화를 이용한 웨이브렛 패킷 이미지 코딩)

  • 이양원
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.161-164
    • /
    • 2000
  • Recently efficient image coding using zerotree have been proposed. In these methods, the locations of nonzero wavelet coefficient are encoded with a tree structure, called zerotree, which can exploit the self-similarity of the wavelet pyramid decomposition across different scales. These are very especially in low bit rate image coding. In this paper, two zerotree image coding algorithm, EZW and SPHIT are briefly introduced, and a new zerotree searching scheme is proposed to emphasize the significance of a wavelet coefficient by its orientation as well as its scale.

  • PDF

Adaptive Equalization Algorithms of Channel Nonlinearities in Data Transmission Systems. (전송 시스템에서 비선형 채널특성을 이용한 적응 등화기 알고리즘)

  • 안봉만;임규만
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.238-241
    • /
    • 2003
  • This paper presents a nonlinear least squares decision feedback equalizer Bilinear systems are attractive because of the ability to approximate a large class of nonlinear systems efficiently. The nonlinearity of channel is modeled using a bilinear system. The algorithms are derived by using the QR decomposition for minimization covariance matrix of prediction error by applying Givens rotation to the bilinear model. Result of computer simulation experiments that compare the performance of the bilinear DFE to two other DFE's in eliminating the intersymbol interference caused by a nonlinear channel are presented In the paper.

  • PDF

An investigation of subband decomposition and feature-dimension reduction for musical genre classification (음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구)

  • Seo, Jin Soo;Kim, Junghyun;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Musical genre is indispensible in constructing music information retrieval system, such as music search and classification. In general, the spectral characteristics of a music signal are obtained based on a subband decomposition to represent the relative distribution of the harmonic and the non-harmonic components. In this paper, we investigate the subband decomposition parameters in extracting features, which improves musical genre classification accuracy. In addition, the linear projection methods are studied to reduce the resulting feature dimension. Experiments on the widely used music datasets confirmed that the subband decomposition finer than the widely-adopted octave scale is conducive in improving genre-classification accuracy and showed that the feature-dimension reduction is effective reducing a classifier's computational complexity.

Image Enhancement Using Homomorphic Transformation and Multiscale Decomposition (호모모프변환과 다중 스케일 분해를 이용한 영상향상)

  • Ahn, Sang-Ho;Kim, Ki-Hong;Kim, Young-Choon;Kwon, Ki-Ryong;Seo, Yong-Su
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1046-1057
    • /
    • 2004
  • An image enhancement method using both homomorphic transformation and multiscale decomposition is proposed. The original image is first transformed to homomorphic domain by taking the logarithm, is then separated to multiscales. These multiscales are combined with weighting. The combined signal is exponentially transformed back into intensity domain. In homomorphic domain, the magnitude control of low frequency component make change the dynamic range, and the magnitude control of the other frequency components contribute to enhancement of the contrast. The "${\AA}$ trous" algorithm, which has a simple and efficient scheme, is used for multiscale decomposition. The performance of proposed method is verified by simulation.

  • PDF

A Temporal Decomposition Method Based on a Rate-distortion Criterion (비트율-왜곡 기반 음성 신호 시간축 분할)

  • 이기승
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2002
  • In this paper, a new temporal decomposition method is proposed. which takes into consideration not only spectral distortion but also bit rates. The interpolation functions, which are one of necessary parameters for temporal decomposition, are obtained from the training speech corpus. Since the interval between the two targets uniquely defines the interpolation function, the interpolation can be represented without additional information. The locations of the targets are determined by minimizing the bit rates while the maximum spectral distortion maintains below a given threshold. The proposed method has been applied to compressing the LSP coefficients which are widely used as a spectral parameter. The results of the simulation show that an average spectral distortion of about 1.4 dB can be achieved at an average bit rate of about 8 bits/Frame.

The Effect of Electroacupuncture at the PC6 (Naegwan) on the correlation dimension of EEG (내관 전침 자극이 뇌파의 상관 차원에 미치는 영향 - 정보전달 모드도해 분석법을 중심으로 -)

  • Hong Seung-Won;Hwang Bae-Yun;Lee Sang-Ryong
    • Korean Journal of Acupuncture
    • /
    • v.20 no.3
    • /
    • pp.49-60
    • /
    • 2003
  • The aim of this study was to examine the effects of electroacupuncture(EA) at the PC6 (Naegwan) on normal humans using KarhunenLoeve decomposition method. Electroencephalogram(EEG) is a multi-scaled signal consisting of several components of time series with different dominant frequency ranges and different origins. EEG KarhunenLoeve decomposition method exibit site-specific and state-related differences in specific frequency bands. In this study, KarhunenLoeve decomposition method was used as a measure(D2) of complexity. 30 channel EEG study was carried out in 10 subjects (10 males; $age=21.4{\pm}0.5$ years). Results : We found that the average values and standard deviations of D2 at FP1, FP2, FTC1, FTC2, TT1, TT2, T4, TCP1, P3, P4, T6, OZ channel (p<0.05) were higher than during the acupuncture treatment, and the average values and standard deviations of D2 at F3, F8 channels(p<0.05) were lowered than during the acupuncture treatment. However, the comparison with that before and after the treatment shows no significant differences in all channels.

  • PDF

Modeling and Analysis of Radar Target Signatures in the VHF-Band Using Fast Chirplet Decomposition (고속 Chirplet 분리기법을 이용한 VHF 대역 레이더 표적신호 모델링 및 해석)

  • Park, Ji-hoon;Kim, Si-ho;Chae, Dae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Although radar target signatures(RTS), such as range profiles have played an important role for target recognition in the X-band radar, they would be less effective when a target is designed to have low radar cross section(RCS). Recently, a number of research groups have conducted the studies on the RTS in the VHF-band where such targets can be better detected than in the X-band. However, there is a lack of work carried out on the mathematical description of the VHF-band RTS. In this paper, chirplet decomposition is employed for modeling of the VHF-band RTS and its performance is compared with that of existing scattering center model generally used for the X-band. In addition, the discriminative signal analysis is performed by chirplet parameterization of range profiles from in an ISAR image. Because the chirplet decomposition takes long computation time, its fast form is further proposed for enhanced practicality.