• Title/Summary/Keyword: signal acquisition

Search Result 863, Processing Time 0.032 seconds

Correlation Analysis of Signal to Noise Ratio (SNR) and Suspended Sediment Concentration (SSC) in Laboratory Conditions (실험수로에서 신호대잡음비와 부유사농도의 상관관계 분석)

  • Seo, Kanghyeon;Kim, Dongsu;Son, Geunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.775-786
    • /
    • 2017
  • Monitoring sediment flux is crucial especially for maintaining river systems to understand morphological behaviors. Recently, hydroacoustic backscatter (or SNR) as a surrogate to empirically estimate suspended sediment concentration has been increasingly highlighted for more efficient acquisition of sediment dataset, which is difficult throughout direct sediment sampling. However, relevant contemporary researches have focused on wide range solution applicable for large natural rivers where H-ADCPs with relatively low acoustic frequency have been widely utilized to seamlessly measure streamflow discharge. In this regard, this study aimed at investigating hydroacoustical characteristics based on a very recently released H-ADCP (SonTek SL-3000) with high acoustic frequency of 3 MHz in order to capitalize its capacity to be applied for suspended sediment monitoring in laboratory conditions. SL-3000 was tested in a laboratory flume to collect SNR in conjunction with LISST-100X for actual sediment concentration and particle distribution in both sand and silt sediment injection in various amount. Conventional algorithms to correct signal attenuations for water and sediment were carefully tested to validate whether they can be applied for SL-3000. As result of analyzing the SNR-SSC correlation trand, through further study in the future, it is confirmed that SSC can be observed indirectly by using the SNR.

Development of Imaging Gamma Probe Using the Position Sensitive PMTube (위치 민감형 광전자증배관을 이용한 영상용 감마프로브의 개발)

  • Bong, Jeong-Gyun;Kim, Hui-Jung;So, Su-Gil;Kim, Han-Myeong;Lee, Jong-Du;Gwon, Su-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • The purpose of this study was to develop a miniature imaging gamma probe with high performance that can detect small or residual tumors after surgery. Gamma probe detector system consists of NaI(Tl) scintillator, position sensitive photomultiplier tube (PSPMT), and collimator. PSPMT was optically coupled with 6.5 mm thick, 7.62 cm diameter of NaI(Tl) crystal and supplied with -1000V for high voltage. Parallel hexagonal hole collimator was manufactured for characteristics of 40-mm hole length, 1.3-mm hole diameter, and 0.22 mm septal thickness. Electronics consist of position and trigger signal readout systems. Position signals were obtained with summing, subtracting, and dividing circuit using preamplifer and amplifier. Trigger signals were obtained using summing amplifier, constant fraction discriminator, and gate and delay generator module with preamplifer. Data acquisition and processing were performed by Gamma-PF interface board inserted into pentium PC and PIP software. For imaging studies, flood and slit mask images were acquired using a point source. Two hole phantom images were also acquired with collimator. Intrinsic and system spatial resolutions were measured as 3.97 mm and 5.97 mm, respectively. In conclusion, Miniature gamma probe images based on the PSPMT showed good image quality, we conclude that the miniature imaging gamma probe was successfully developed and good image data were obtained. However, further studies will be required to optimize imaging characteristics.

  • PDF

Development of a Multichannel Eddy Current Testing Instrument(I) (다중채널 와전류탐상검사 장치 개발(I))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoon, Byung-Sik;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.155-161
    • /
    • 2010
  • Recently, the electromagnetic techniques of the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In this study, the synthesizer module and the analog module which are essential to the ECT system were primarily developed. The developed ECT system is basically a multifrequency type which is able to inject the maximum four frequencies based on the frequency and time domain multiplexing method. Conclusively, we confirmed that the EC signal was processed appropriately in each circuit modules, and the Lissajous EC signal was displayed in the impedance plane.

The Feasibility for Whole-Night Sleep Brain Network Research Using Synchronous EEG-fMRI (수면 뇌파-기능자기공명영상 동기화 측정과 신호처리 기법을 통한 수면 단계별 뇌연결망 연구)

  • Kim, Joong Il;Park, Bumhee;Youn, Tak;Park, Hae-Jeong
    • Sleep Medicine and Psychophysiology
    • /
    • v.25 no.2
    • /
    • pp.82-91
    • /
    • 2018
  • Objectives: Synchronous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has been used to explore sleep stage dependent functional brain networks. Despite a growing number of sleep studies using EEG-fMRI, few studies have conducted network analysis on whole night sleep due to difficulty in data acquisition, artifacts, and sleep management within the MRI scanner. Methods: In order to perform network analysis for whole night sleep, we proposed experimental procedures and data processing techniques for EEG-fMRI. We acquired 6-7 hours of EEG-fMRI data per participant and conducted signal processing to reduce artifacts in both EEG and fMRI. We then generated a functional brain atlas with 68 brain regions using independent component analysis of sleep fMRI data. Using this functional atlas, we constructed sleep level dependent functional brain networks. Results: When we evaluated functional connectivity distribution, sleep showed significantly reduced functional connectivity for the whole brain compared to that during wakefulness. REM sleep showed statistically different connectivity patterns compared to non-REM sleep in sleep-related subcortical brain circuits. Conclusion: This study suggests the feasibility of exploring functional brain networks using sleep EEG-fMRI for whole night sleep via appropriate experimental procedures and signal processing techniques for fMRI and EEG.

Development of online drone control management information platform (온라인 드론방제 관리 정보 플랫폼 개발)

  • Lim, Jin-Taek;Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.193-198
    • /
    • 2021
  • Recently, interests in the 4th industry have increased the level of demand for pest control by farmers in the field of rice farming, and the interests and use of agricultural pest control drones. Therefore, the diversification of agricultural control drones that spray high-concentration pesticides and the increase of agricultural exterminators due to the acquisition of national drone certifications are rapidly developing the agricultural sector in the drone industry. In addition, as detailed projects, an effective platform is required to construct large-scale big data due to pesticide management, exterminator management, precise spraying, pest control work volume classification, settlement, soil management, prediction and monitoring of damages by pests, etc. and to process the data. However, studies in South Korea and other countries on development of models and programs to integrate and process the big data such as data analysis algorithms, image analysis algorithms, growth management algorithms, AI algorithms, etc. are insufficient. This paper proposed an online drone pest control management information platform to meet the needs of managers and farmers in the agricultural field and to realize precise AI pest control based on the agricultural drone pest control processor using drones and presented foundation for development of a comprehensive management system through empirical experiments.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (전동 이동 보조기기 주행 안전성 향상을 위한 AI기반 객체 인식 모델의 구현)

  • Je-Seung Woo;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.166-172
    • /
    • 2022
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.

Implementation of AI-based Object Recognition Model for Improving Driving Safety of Electric Mobility Aids (객체 인식 모델과 지면 투영기법을 활용한 영상 내 다중 객체의 위치 보정 알고리즘 구현)

  • Dong-Seok Park;Sun-Gi Hong;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.119-125
    • /
    • 2023
  • In this study, we photograph driving obstacle objects such as crosswalks, side spheres, manholes, braille blocks, partial ramps, temporary safety barriers, stairs, and inclined curb that hinder or cause inconvenience to the movement of the vulnerable using electric mobility aids. We develop an optimal AI model that classifies photographed objects and automatically recognizes them, and implement an algorithm that can efficiently determine obstacles in front of electric mobility aids. In order to enable object detection to be AI learning with high probability, the labeling form is labeled as a polygon form when building a dataset. It was developed using a Mask R-CNN model in Detectron2 framework that can detect objects labeled in the form of polygons. Image acquisition was conducted by dividing it into two groups: the general public and the transportation weak, and image information obtained in two areas of the test bed was secured. As for the parameter setting of the Mask R-CNN learning result, it was confirmed that the model learned with IMAGES_PER_BATCH: 2, BASE_LEARNING_RATE 0.001, MAX_ITERATION: 10,000 showed the highest performance at 68.532, so that the user can quickly and accurately recognize driving risks and obstacles.

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

The Usefulness of LEUR Collimator for 1-Day Basal/Acetazolamide Brain Perfusion SPECT (1-Day Protocol을 사용하는 Brain Perfusion SPECT에서 LEUR 콜리메이터의 유용성)

  • Choi, Jin-Wook;Kim, Soo-Mee;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.94-100
    • /
    • 2011
  • Purpose: Basal/Acetazolamide-challenged brain perfusion SPECT is very useful to assess cerebral perfusion and vascular reserve. However, as there is a trade off between sensitivity and spatial resolution in the selection of collimator, the selection of optimal collimator is crucial. In this study, we examined three collimators to select optimal one for 1-day brain perfusion SPECT. Materials and Methods: Three collimators, low energy high resolution-parallel beam (LEHR-par), ultra resolution-fan beam (LEUR-fan) and super fine-fan beam (LESFR-fan), were tested for 1-day imaging using Triad XLT 9 (TRIONIX). The SPECT images of Hoffman 3D brain phantom filled with 99mTc of 170 MBq and a normal volunteer were acquired with a protocol of 50 kcts/frame and detector rotation of 3 degree. Filterd backprojection (FBP) reconstruction with Butterworth filter (cut off frequencies, 0.3 to 0.5) was performed. The quantitative and qualitative assessments for three collimators were performed. Results: The blind tests showed that LESFR-fan provided the best image quality for Hoffman brain phantom and the volunteer. However, images for all the collimator were evaluated as 'acceptable'. On the other hand, in order to meet the equivalent signal-to-noise ratio (SNR), total acquisition time or radioactivity dose for LESFR-fan must have been increased up to almost twice of that for LEUR-fan and LEHR-par. The volunteer test indicated that total acquisition time could be reduced approximately by 10 to 14 min in clinical practice using LEUR-fan and LEHR-par without significant loss on image quality, in comparison with LESFR-fan. Conclusion: Although LESFR-fan provides the best image quality, it requires significantly more acquisition time than LEUR-fan and LEHR-par to provide reasonable SNR. Since there is no significant clinical difference between three collimators, LEUR-fan and LEHR-par can be recommended as optimal collimators for 1-day brain perfusion imaging with respect to image quality and SNR.

  • PDF