• Title/Summary/Keyword: siRNA

Search Result 628, Processing Time 0.026 seconds

siRNA-mediated gene silencing of MexB from the MexA-MexB-OprM efflux pump in Pseudomonas aeruginosa

  • Gong, Feng-Yun;Zhang, Ding-Yu;Zhang, Jiang-Guo;Wang, Li-Li;Zhan, Wei-Li;Qi, Jun-Ying;Song, Jian-Xin
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • To gain insights into the effect of MexB gene under the short interfering RNA (siRNA), we synthesized 21 bp siRNA duplexes against the MexB gene. RT-PCR was performed to determine whether the siRNA inhibited the expression of MexB mRNA. Changes in antibiotic susceptibility in response to siRNA were measured by the E-test method. The efficacy of siRNAs was determined in a murine model of chronic P. aeruginosa lung infection. MexB-siRNAs inhibited both mRNA expression and the activity of P. aeruginosa in vitro. In vivo, siRNA was effective in reducing the bacterial load in the model of chronic lung infection and the P. aeruginosa-induced pathological changes. MexB-siRNA treatment enhanced the production of inflammatory cytokines in the early infection stage (P < 0.05). Our results suggest that targeting of MexB with siRNA appears to be a novel strategy for treating P. aeruginosa infections.

Inhibition of Cervical Cancer Cell Growth by Gene Silencing of HPV16 E6 Induced by Short-interfering RNA

  • Park, Sang-Muk;Lee, Sun-Kyung;Kim, Yoon-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.3
    • /
    • pp.89-97
    • /
    • 2011
  • The Human Papilloma Virus (HPV) infection has been strongly associated with pathogenesis of uterine cervix carcinoma. HPV type 16, a causative agent of uterine cervix carcinoma, encodes the E6 and E7 oncogenes, expression of which is pivotal for malignant transformation and maintenance of malignant phenotypes. To develop a gene therapy for HPV-related carcinoma, We investigated the effect of E6 short-interfering RNA (E6 siRNA) on the expression of this oncogene and on the growth of HPV 16-related uterine cervix carcinoma cells. SiHa cells, a uterine cervix carcinoma cell line, which contain a single copy of HPV 16 integrated in the chromosome and express the E6 and E7 oncogenes. Before 24 hr of transfection, cells were seeded and transfected with control plasmid or E6 siRNA-expressing plasmid. The mRNA was analysed by reverse transcriptase polymerase chain reaction (RT-PCR). The cell growth rate was investigated by MTT method. The E6 mRNA level in SiHa cells was decreased in HPV 16 E6 siRNA-expression vector transfected cells and a decrease in the growth of these cells was also observed. From these results. it is evident that E6 siRNA played a role in suppression of growth of SiHa cells and has a fair chance as a candidate for gene specific therapy for HPV related uterine cervix carcinoma.

  • PDF

siRNA-mediated Silencing of Survivin Inhibits Proliferation and Enhances Etoposide Chemosensitivity in Acute Myeloid Leukemia Cells

  • Karami, Hadi;Baradaran, Behzad;Esfahani, Ali;Estiar, Mehrdad Asghari;Naghavi-Behzad, Mohammad;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7719-7724
    • /
    • 2013
  • Background: Overexpression of survivin, a known inhibitor of apoptosis, is associated with tumor progression and drug resistance in numerous malignancies, including leukemias. The aim of this study was to investigate the effect of a specific survivin small interference RNA (siRNA) on proliferation and the sensitivity of HL-60 acute myeloid leukemia (AML) cells to the chemotherapeutic drug etoposide. Materials and Methods: The cells were transfected with siRNAs using Lipofectamine $^{TM}2000$ transfection reagent. Relative survivin mRNA and protein levels were measured by quantitative real-time PCR and Western blotting, respectively. Trypan blue exclusion assays were performed to monitor tumor cell proliferation after siRNA transfection. The cytotoxic effects of etoposide and survivin siRNA, alone and in combination, on leukemic cells were determined using MTT assay. Apoptosis was assessed by ELISA cell death assay. Results: Survivin siRNA markedly reduced both mRNA and protein expression levels in a time-dependent manner, leading to distinct inhibition of cell proliferation and increased spontaneous apoptosis. Surprisingly, survivin siRNA synergistically increased the cell toxic effects of etoposide. Moreover, survivin down-regulation significantly enhanced its induction of apoptosis. Conclusions: Our study suggests that down-regulation of survivin by siRNA can trigger apoptosis and overcome drug resistance of leukemia cells. Therefore, survivin siRNA may be an effective adjuvant in AML chemotherapy.

Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide

  • Karami, Hadi;Baradaran, Behzad;Esfehani, Ali;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.629-635
    • /
    • 2014
  • Background: Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. Materials and Methods: siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Results: Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time-dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Conclusions: Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

Interference of EGFP RNA in Human NT-2/D1 Cell Lines Using Human U6 Promoter-based siRNA PCR Products

  • Kwak, Young-Don;Sugaya, Kiminobu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.273-276
    • /
    • 2006
  • RNA interference (RNAi), a process of sequence-specific gene suppression, has been known as a natural gene regulatory mechanism in a wide range of lower organisms. Recently, we have reported that a transfection of human U6 promoter (hU6) driven hairpin small-interference RNA (siRNA) plasmid specifically knocks down the target gene by post-transcriptional gene silencing in mammalian cells. Here we report that transfection of polymerase chain reaction (PCR) products, containing human U6 promoter with hairpin siRNA, knocks down the target gene expression in human teratocarcinoma NT-2/D1 cells. Moreover, we showed 3' end termination sequence, 5 Ts, is not critical elements for knocking down in PCR-based siRNA system. Therefore, the PCR-based siRNA system is a promising tool not only for the screening but also to temporally regulate gene expression in the human progenitor cells.

Inhibition of melanogenesis by tyrosinase siRNA in human melanocytes

  • An, Sang-Mi;Koh, Jae-Sook;Boo, Yong-Chool
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.178-183
    • /
    • 2009
  • Tyrosinase (TYR) plays a critical role in cellular melanogenesis and, thus, has been the major target of pharmacological approaches for the control of skin pigmentation. This study examined an alternative molecular approach using TYR-small interfering RNA (siRNA) to control melanogenesis in the human melanocytes. Both the mRNA and protein levels of TYR were significantly lowered by TYR-siRNA treatment, whereas TYR-related protein 1 and TYR-related protein 2 displayed no such changes. TYR-siRNA treatment inhibited the cellular melanin synthesis from the externally supplied TYR substrate L-tyrosine. TYR-siRNA also suppressed melanin synthesis and decreased the viability of cells exposed to ultraviolet radiation, supporting a critical role of melanin in protection against ultraviolet radiation. These results suggest that molecular approaches using siRNA targeted to the enzymes of melanogenic pathway may provide a novel strategy for the control of cell pigmentation.

Recyclable single-stranded DNA template for synthesis of siRNAs

  • Ali, Mussa M.;Obregon, Demian;Agrawal, Krishna C.;Mansour, Mahmoud;Abdel-Mageed, Asim B.
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.732-737
    • /
    • 2010
  • RNA interference is a post-transcriptional silencing mechanism triggered by the bioavailability and/or exogenous introduction of double-stranded RNA (dsRNA) into cells. Here we describe a novel method for the synthesis of siRNA in a single vessel. The method employs in vitro transcription and a single-stranded DNA (ssDNA) template and design, which incorporates upon self-annealing, two promoters, two templates, and three loop regions. Using this method of synthesis we generated efficacious siRNAs designed to silence both exogenous and endogenous genes in mammalian cells. Due to its unique design the single-stranded template is easily amenable to adaptation for attachment to surface platforms for synthesis of siRNAs. A siRNA synthesis platform was generated using a 3' end-biotinylated ssDNA template tethered to a streptavidin coated surface that generates stable siRNAs under multiple cycles of production. Together these data demonstrate a unique and robust method for scalable siRNA synthesis with potential application in RNAi-based array systems.

Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects

  • Kwon, Ok-Seon;Kwon, Soo-Jung;Kim, Jin Sang;Lee, Gunbong;Maeng, Han-Joo;Lee, Jeongmi;Hwang, Gwi Seo;Cha, Hyuk-Jin;Chun, Kwang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.282-289
    • /
    • 2018
  • Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ${\Delta}G{\geq}-34.6kcal/mol$, i-Score value ${\geq}65$, and siRNA scales score ${\leq}30$. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3' overhang at the 3' end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms.

Inhibition of Hepatitis B Virus Replication by in vitro Synthesized RNA

  • Yang, Yeon-Ju;Heo, Young-Shin;Kim, Jeong-Ki;Kim, Sang-Yong;Ahn, Jeong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1385-1389
    • /
    • 2005
  • Human hepatitis B virus (HBV) is a pathogen related to the development of liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, the efficient methods to suppress HBV replication have not been developed yet. Therefore, we have used RNA interference (RNAi) as a potential tool for the suppression of HBV replication. Here, we designed a 21 nt small intefering dsRNA (siRNA) against hepatitis B virus X (HBx) RNA with 3' overhanging ends derived from T7 promoter. It has been reported that HBV X protein plays an important role in HBV gene expression and viral replication. The suppression of HBx gene expression by the 21 nt siRNA was investigated by Northern blot analysis and chloramphenicol acetyl transferase (CAT) assay. The level of HBx mRNA was decreased by siRNA in a dose-dependent manner. We also found that the 21 nt siRNA inhibited the HBV replication in hepatocellular carcinoma cell.

Effects of Relative Lysyl Oxidase and Hydrogen Peroxide on Odontoblastic Differentiation (인간치수세포 분화과정에서 과산화수소에 대한 Lysyl Oxidase의 역할)

  • Lee, Hwa-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Although it has been reported that lysyl oxidase (LOX) is involved in odontoblastic differentiation, the role of LOX on odontoblastic differentiation by hydrogen peroxide ($H_2O_2$) have not been clarified. In the present study, we investigated whether $H_2O_2$, reactive oxygen species (ROS), is modulated the messenger RNA (mRNA) expression and activity of LOX during odontoblastic differentiation of human dental pulp (HDP) cells. The mRNA expression was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, and LOX enzyme activity was measured by high sensitive fluorescent assay. Expression of the odontoblastic differentiation marker genes were assessed in the presence and absence of specific small interfering RNAs (siRNAs) of the LOX and LOXL. The $H_2O_2$-induced mRNA expression of LOX family was significant reduction of LOX, LOXL, and LOXL3 mRNA levels in HDP cells. LOX enzyme activity was increased at $H_2O_2$ 0.3 mM for 24 hours. The mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) was inhibited by LOX- and LOXL-specific siRNAs whereas the mRNA expression of dentin matrix protein1 (DMP1), and dentin sialophosphoprotein (DSPP) was inhibited by LOX-specific siRNA. In LOX enzyme activity, siRNA-induced knockdown of both LOX and LOXL inhibited the total amine oxidase activity in HDP cells, as in the case of mRNA expression. In conclusion, the essential role of $H_2O_2$ on odontoblastic differentiation suggests that its regulation by LOX may have pharmacologic importance in HDP cells.