• Title/Summary/Keyword: shunt damping

Search Result 50, Processing Time 0.024 seconds

Vibration Suppression of Beam by Using Electromagnetic Shunt Damper (전자기 션트 감쇠기를 이용한 빔의 진동억제에 관한 연구)

  • Cheng, Tai-Hong;Lim, Seung-Hyun;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.77-80
    • /
    • 2008
  • In this paper the electromagnetic shunt damper was newly employed for vibration suppression of the flexible structures. The electromagnetic shunt damper consists of a coil and a permanent magnet. The ends of the coil were connected to the RLC shunt circuit. The numerical solutions of resonant frequency of the shunt circuits were calculated by using Pspice. The vibration and damping characteristics of the flexible beams with the electromagnetic shunt damper were investigated by tuning the circuit parameters. Also, the effect of the magnetic intensity on the shunt damping was studied with the variation of the gap between the aluminum beam and the permanent magnet. Present results show that the magnet shunt damper can be successfully applied to reduce the vibration of the flexible structures.

  • PDF

Finite element analysis of piezoelectric structures incorporating shunt damping (압전 션트 감쇠된 구조물의 유한요소해석)

  • 김재환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.470-477
    • /
    • 2002
  • Possibility of passive piezoelectric damping based on a new shunting parameter estimation method is studied using finite element analysis. The adopted tuning method is based electrical impedance that is found at piezoelectric device and the optimal criterion for maximizing dissipated energy at the shunt circuit. Full three dimensional finite element model is used for piezoelectric devices with cantilever plate structure and shunt electronic circuit is taken into account in the model. Electrical impedance is calculated at the piezoelectric device, which represents the structural behavior in terms of electrical field, and equivalent electrical circuit parameters for the first mode are extracted using PRAP (Piezoelectric Resonance Analysis Program). After the shunt circuit is connected to the equivalent circuit for the first mode, the shunt parameters are optimally decided based on the maximizing dissipated energy criterion. Since this tuning method is based on electrical impedance calculated at piezoelectric device, multi-mode passive piezoelectric damping can be implemented for arbitrary shaped structures.

  • PDF

Parameter Optimization for Vibration Control of a Cantilever Beam Using Piezoelectric Shunt Damping System (압전분기회로를 이용한 보 구조물의 진동제어 파라미터 최적화 해석)

  • Lim K.C.;Cho D.S.;Park W.C.;Kee C.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.918-921
    • /
    • 2005
  • According to the mechanical-electrical coupling characteristics and the electrical Impedance property of resistor-inductor-capacitor(RLC) series resonant circuit, the mechanical impedance analysis of a bimorph piezoceramic patch shunted with a series RLC resonant circuit is conducted. The displacement transfer function of a cantilever beam bonded with a piezoelectric shunt damping module is deduced in the case of single mode vibration of the beam. By the use of vibration damping theory of tuned mass damper system, the parameter optimization of piezoelectric shunt damping system is performed. The optimal resonant state of the shunting circuit can be obtained when the resister and conductor are optimally adjusted. Test results show that the vibration control effect as well improved with optimized piezoelectric shunt system.

  • PDF

Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping

  • Park, Chul-Hue;Park, Hyun-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1650-1658
    • /
    • 2003
  • This paper deals with a novel shunt circuit, which is capable of suppressing multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of a piezoelectric damper connected with a series and a parallel resistor-negative capacitor branch circuit, the stiffness ratio and loss factor with respect to the non-dimensional frequency are considered. The mechanism of the shunt damper is also described by considering a shunt voltage constrained by shunt impedance. To obtain a guideline model of the piezo/beam system with a negative capacitive shunting, the governing equations of motion are derived through the Hamilton's principle and a piezo sensor equation as well as a shunt-damping matrix is developed. The theoretical analysis shows that the piezo/beam system combined with a series and a parallel resistor-negative capacitor branch circuit developed in this study can significantly reduce the multiple-mode vibration amplitudes over the whole structural frequency range.

Study on Transmission Loss in Smart Panel Using Piezoelectric Shunt (압전 션트를 이용한 스마트 패널의 투과 손실 관한 연구)

  • Lijie, Zhao;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.541-544
    • /
    • 2005
  • In this paper, admittance is introduced to represent electro-mechanical characteristics of piezoelectric structures and to predict the performance of piezoelectric shunt system. Finite element method is used to obtain numerical admittance. In order to illuminate the effect of noise reduction in the shunt system, two experimental setups were constructed. One is for matching the resonant shunt damping. The other is a standard test setup according to SAE J1400 used to measure the transmission loss for the smart panel with shunt circuit. Shunt performance and noise reduction of smart panel are realized by these two experiments.

  • PDF

Transmitted Noise Reduction Performance of Piezoelectric Single Panel through Piezo-damping (압전감쇠를 통한 압전단일패널의 전달 소음저감성능)

  • 이중근;김재환;김기선;이형식
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • The possibility of a noise reduction of piezoelectric single Panels is experimentally studied. Piezoelectric single panel is basically a plate structure on which piezoelectric patch with shunt circuit is mounted. The use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. Piezo-damping is implemented by using a newly proposed tuning method. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. By measuring the electrical impedance at the piezoelectric patch bonded on a structure, an equivalent electrical model is constructed near the system resonance frequency. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of single Panel is tested on an acoustic tunnel. The tunnel is a tube with a square cross section and a loud speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across Panels is measured. By enabling the piezoelectric shunt damping noise reduction is achieved at the resonance frequencies as well. Piezoelectric single panel with piezoelectric shunt damping is a promising technology for noise reduction in a broadband frequency.

  • PDF

Vibration Suppression of HDD Spindle System Using Piezoelectric Shunt Damping (압전 션트 댐핑을 이용한 HDD 스핀들 시스템의 진동 저감)

  • 임수철;박종성;최승복;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1089-1094
    • /
    • 2003
  • A main vibration source in HDD is arisen from high rotating disk/spindle, and vibration suppression of the disk-spindle system becomes a critical issue and a major concern for high performance of the drive. In this paper, we study the feasibility of suppressing unwanted vibration of disk-spindle system of the HDD by external shock and excitation utilizing piezoelectric shunt damping methodology. By considering dynamic characteristics of the disk-spindle system through modal analysis, a target vibration mode is determined and then the piezoelectric material is carefully integrated to the modified drive. In order to maximize improvement of vibration characteristics of the proposed system, shunt circuit is optimally designed via tuning processes. Finally, the vibration characteristics of the high rotating disk-spindle system of the proposed drive is experimentally evaluated in frequency domain.

  • PDF

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 박철휴;안상준;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.