• Title/Summary/Keyword: shrinkage reduction

Search Result 295, Processing Time 0.026 seconds

A Study on the Properties of Polymer Mortar Using Waste Expanded Polystyrene as a Shrinkage-Reducing Agent (수축저감제로서 발포 폴리스티렌 폐기물을 이용한 폴리머 모르터의 기초적 성질에 관한 연구)

  • 최낙운;김완기;조영국;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.362-367
    • /
    • 1998
  • The purpose of this study is to examine the influences of polystyrene content and St/UP on the setting shrinkage and strengths of polymer mortar with waste expanded polystyrene resin as a shrinkage-reducing agent, and to recommend the optimum binder formulations for product of low-shrinkage polymer mortar. In this paper, polymer mortar is prepared with waste expanded polystyrene content and St/UP, and tested for setting shrinkage, flexural and compressive strengths. From the test results, irrespective of increasing of waste expanded polystyrene resin, the strengths reduction of polymer mortar with waste expanded polystyrene(EPS) resin is not recognized. And the setting shrinkage is reduced with EPS resin content. The waste expanded polystyrene resin as a shrinkage-reducing agent can be used in the same manner as commercial polystyrene resin. In this study, we can obtain the optimum mix proportions of polymer mortar using EPS resin.

  • PDF

Shrinkage Properties of Ultra High Strength Steel Fiber Reinforced Concrete (초고강도 강섬유보강 콘크리트의 수축특성)

  • Koh Kyoung Taek;Pei Chang Chun;Lee Gun Cheol;Kang Soo Tae;Kim Sung Wook;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.647-650
    • /
    • 2005
  • This paper is to investigate the shrinkage properties of ultra high strength concrete(UHSC) incorporating $5\%$ of expansive additives(EA) along with $1\%$ of shrinkage reducing agent(SRA). UHSC subjected to steam curing and incorporated with steel fiber exhibited higher compressive strength than control UHSC by as much as50MPa at 7days, while at 28days, noticeable change in compressive strength was not observed between UHSC mixtures. Control UHSC subjected to steam curing had a $922{\times}10^6$ of autogenous shrinkage strain value, which was 6.7 times of drying shrinkage strain value at 42 days. The combination of EA and SRA resulted in a decrease in autogenous shrinkage by as much as half of control mixture. Steam curing contributed to the reduction of autogenous shrinkage by as much as $11\%$ compared with that of standard curing.

  • PDF

Preparation and Properties of Low-shrinkage Polymer Concretes (저수축형 폴리머 콘크리트의 제조 및 물리.역학적 특성)

  • 황진하;연구석;이윤수;이기원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.321-326
    • /
    • 2000
  • Many different polymer based concrete materials are known today, but the large setting or hardening shrinkage of polymer concrete is a problem to overcome in their practical applications. The setting shrinkage reaches about five to ren times he drying shrinkage ordinary cement concrete, i.e, 50 to $60\times10^{-4}$. This paper deals with a reduction in the hardening shrinkage of unsaturated polyester resin concrete which is treated with respect to shrinkage-reducing agent content, S/a ratio and catalyst content, and tested for length change during hardening, and flexural and compressive strength. It is show that the change of shrinkage-reducing agent content and S/a ratio affected the length change of the unsaturated polyester resin concrete during hardening.

  • PDF

Evaluating Shrinkage Characteristic of Ternary Grout for PSC Bridge Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 PSC 교량용 3성분계 그라우트의 수축특성 평가)

  • Yuan, Tian-Feng;An, Gi-Hong;Ryu, Gum-Sung;Koh, Kyoung-Taek;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 2016
  • This paper reports on analyzing the free and restrained shrinkage characteristic of ternary grout used cementitious admixture. In this study, the cementitious admixture was used such as fly ash, ziricania silica fume by combination of expansive additive (a, b) and shrinkage reducing agent. And a number of basic performance tests were conducted to investigate bleeding, volume change, fluidity and compressive strength behavior. According to the results, within appropriate mixing ratio, even the fluidity is not influenced by expansive additive and shrinkage reducing agent, the resistant properties of bleeding, volume change, shrinkage and compressive strength are increased. Comparing with plain grout, the free shrinkage reduced by a minimum of 29% which specimens are added expansive additive and shrinkage reducing agent. The combination of expansive additive a and shrinkage reducing agent is the most effective for reduction of shrinkage. And increasing the mixing ratio of expansive additive and shrinkage reducing agent extended cracking time. Nevertheless, combined addition of expansive additive a 2.0% and shrinkage reducing agent 0.50% has best shrinkage reduction behavior and not appeared cracking. From the above, the mixing ratio of 2.0% of expansive additive a and 0.50% of shrinkage reducing agent is high performance ternary grout for PSC bridge.

Drying Shrinkage of Concrete Combining Expansive Additives and Shrinkage Reducing Agent (팽창재와 수축저감제를 병용한 콘크리트의 건조수축 특성)

  • Han, Cheon-Goo;Han, Min-Cheol;Song, Seung-Heon;Yoon, Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.397-404
    • /
    • 2006
  • This paper investigates experimentally the effect of combined addition of expansive additive and shrinkage reducing agent(SRA) on setting time, compressive strength and drying shrinkage of concrete. An increase of EA and SRA content leads to a reduction in flowability, which causes the increase of superplasticizer dosage, while air content increases. For setting time, in spite of increased superplasticizer dosage, with the increase of EA and SRA, setting time shortens. This is due to the presence of alkali ion by SRA and the faster formation of ettringite. At dosage of 5.0% of EA, concrete has the highest compressive strength and above that dosage, compressive strength decreased. On the contrary, the increase of SRA dosage results in a decrease in compressive strength. Combined addition of EA of 5.0% and SRA of 1.0% shows a comparable strength with control concrete. For drying shrinkage, as expected, the increase of EA and SRA dosage leads to reduction of drying shrinkage markedly. Moreover, combined addition of EA and SRA has better drying shrinkage reduction effect than individual use of EA and SRA by as much as $5{\sim}16%$. Optimal combination of EA and SRA is fixed at 5.0% of EA and 0.5% of SRA based on the consideration of the effect of EA and SRA on fresh state, compressive strength and shrinkage of concrete.

Experimental Study on the Long-Term Properties of High Strength Concrete (고강도 콘크리트의 장기거동 특성에 관한 실험적 연구)

  • Joung, Won-Seoup;Park, Dong-Su;Kwon, Ki-Joo;Lee, Wang-Hee;Kang, Min-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.225-226
    • /
    • 2009
  • Day by day, concrete buildings and structure became high-rising and magnificently vast scheduled, as contributed from the development of improved equipments that suitable to specific construction works and high qualitied Material, the durability of the concrete was highly improved. The temporary elastic reduction occur at vertical members such as walls and columns under vertical loads. Specially, inelastic reduction such as creep and shrinkage occur long termly with elastic one in case of reinforced concrete members. Generally, creep and shrinkage depend on time and this is affected by concrete strength, concrete type, member size, steel ratio, and relative humidity. And elastic reduction rely on time, too because concrete is loaded before revelation of perfect strength in terms of construction conditions. So, tests on mechanical properties of concrete certainly need in order to apply to construction by forecasting an amount of reduction caused by the complex factors. Therefore, in this study the tests on creep, shrinkage are carried out to offer basic data for predicting an amount of long-term Properties at the concrete columns of an object structure, and results of the tests are described.

  • PDF

Influence of Shrinkage and Stretch During Drying on Paper Properties

  • Torbjorn Wahlstrom
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.31-46
    • /
    • 1999
  • A drying paper strives to shrink due to the shrinkage of the individual paper fibres. Laboratory results show that a reduction of the shrinkage or an imposed stretch leads to a large increase in tensile stiffness and a large decrease in strain at break. In c cylinder drying section the water in the web is repeatedly heated on the drying cylinder and evaporated in the free draw. To evaluate the drying process regarding influence on paper properties these sub-processes, or drying phases, have to be studied separately. The effect of the conditions on the drying cylinder and on the VacRoll is investigated in pilot trails. Both the fabric tension on the drying cylinder and on the VacRoll reduces the shrinkage of the paper. The laboratory results are used as input to a numerical simulation of the conditions in the free draw. If the web width is increased or the length of the free draw is reduced the mean shrinkage of the paper web is reduced . However, the difference in shrinkage between the middle and the edge of the web is increased.

  • PDF

Effects of Curing Temperature on Autogenous Shrinkage, Relative Humidity, Pore Structure of Cement Pastes

  • Park Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.853-856
    • /
    • 2005
  • A low water/cement ratio leads to autogenous shrinkage of cement paste at an early age. This autogenous shrinkage is related to the change of relative humidity in the pore structure that is formed during the hydration process. The relationship between autogenous shrinkage and relative humidity change are relatively well defined today, but the effects of temperature on autogenous shrinkage, relative humidity, and pore structures have been studied less systematically. This study focused on correlating alterations of these properties of cement paste hydrated at constant temperatures of 20, 40, and $60^{\circ}C$. The test results clearly indicate that increasing curing temperature resulted in increased porosity, particularly for pores between 5 to 50 nm as measured by MIP, and increased autogenous shrinkages, as a consequence of a reduction of relative humidity at early ages.

The Analysis of Concrete Structures due to Differential Shrinkage (부등건저수축으로 인한 콘크리트 구조물의 응력해석)

  • 오병환;최성철;차수원;양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.327-332
    • /
    • 1998
  • Drying shrinkage means the reduction of volume of concrete because of the loss of water in concrete. This shirinkage can cause tensile stresses, crack formations at the exposure surfaces in concretes. The purpose of this paper is to apply differential shrinkage model which uses moisture diffusion equation and to calculate more reasonable shrinkage quantity, the stresses of concretes. The result of this papar is that the mean value of differential shrinkage is similar to the existing result but at exposures surface the shrinkage strains are more large. From this result the possiblility of crack formation can take place. Thus a resonable counterplan for tensile stresses in exposure surfaces is necessary.

  • PDF

Mock-up Test on the Reduction of Drying Shrinkage Crack in Structural Concrete (구조체 콘크리트의 건조수축 균열저감에 관한 Mock-up 실험)

  • Yoon Seob;Song Seung Heon;Han Min Cheol;Kim Kyeong Hwan;Jong Young Hee;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.393-396
    • /
    • 2005
  • This paper presents the results of drying shrinkage of concrete using shrinkage-reducingadmixture(DSRA) studied by the authors through mock-up test. DSRA is proportioned by expansive admixture and shrinkage reducing agent(SRA). Flowing concrete method is also applied to assist the concrete to reduce drying shrinkage by decreasing water content at the same time. The use of EA and SRA does not affect fluidity, bleeding and setting time. Compressive strength of concrete using EA along with SRA exhibited less than that of plain concrete. However, The compressive strength with combination of EA-SRA along with flowing concrete method shows comparable to that of plain concrete. The application of developed method can contribute to reducing drying shrinkage by as much as 30-40$\%$ compared with that of plain concrete.

  • PDF