• 제목/요약/키워드: shrinkage rate

검색결과 448건 처리시간 0.031초

Si3N4-코팅 유/무기 복합 분리막을 통한 리튬이온전지용 분리막의 제조 및 평가 (Fabrication and Evaluation of Si3N4-coated Organic/inorganic Hybrid Separators for Lithium-ion Batteries)

  • 여승훈;손화영;서명수;노태욱;김규철;김현일;이호춘
    • 전기화학회지
    • /
    • 제15권1호
    • /
    • pp.48-53
    • /
    • 2012
  • 리튬 이차전지의 대표적인 분리막인 polyethylene(PE) 분리막은 열에 의한 수축 및 기계적 파열의 단점을 가지고 있다. 본 연구에서는 이러한 기존 PE 분리막을 개선하기 위해 $Si_3N_4$ 코팅 분리막 (SCS, Silicon-nitride Coated Separator)을 제작하였다. $Si_3N_4$ 코팅이 분리막의 열적/기계적 수치안정성, 이온전도도, 및 전지의 출력 특성에 미치는 영향을 알아보았다. $Si_3N_4$ 분말을 polyvinylidene fluoride(PVdF) 결착재를 이용하여 PE 분리막의 한 쪽 면에 10 ${\mu}m$ 두께로 코팅하여 SCS를 제작하였다. SCS는 PE 분리막보다 $100{\sim}150^{\circ}C$에서 우수한 열적안정성을 나타냈으며, 특히 $150^{\circ}C$에서의 수축률은 10~20% 감소를 보였다. 또한, SCS의 인장강도는 PE 분리막에 비해 증가를 보였다. SCS는 PE 분리막에 비해 다소 낮은 이온 전도도를 보였지만, $LiCoO_2$/Li 코인전지의 C-rate(0.2~3C) 특성 평가에서는 유사한 결과를 보였다.

Radiation Induced-Grafting of Acrylic Acid onto Polyvinyl Chloride Fibers

  • Park, Jae-Ho;Lee, Chong-Kwang
    • Nuclear Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.89-99
    • /
    • 1976
  • Polyvinyl Chloride 섬유에 Acrylic acid (AA)를 방사선을 이용하여 Graft 중합 반응시킬 때 Homopolymer의 방지제인 Ferrous, Ferric, Cupric salt을 첨가시켰다. 방사선 선원으로서는 Co-60의 ${\gamma}$-선 또는 Van de Graaff 가속기를 사용하였으며 조사방법으로는 상호조사법을 이용하였다. Graft 중합반응과 Homopolymerization은 반응계에 첨가시킨 Cation에 의해서 영향을 받았으며 그 효율은 $Cu^{2+}$>$Fe^{2+}$>$Fe^{3+}$의 순서였다. Graft 중합반응속도는 방사선 선량율이 $8.5\times10^3$부터 $1.4\times10^{5}$rad/hr 사이에서 선량율의 0.76중에 비례하였고, Craft 중합반응에 대한 활성화 에너지는 $25^{\circ}$부터 $75^{\circ}C$ 사이에서 6.1 Kcal/mole이었다. 이 때 중합반응 용액은 AA-$H_2O$-$(CH_2Cl)_2$로서 Homopolymer inhibitor의 농도는 $4\times10^{-3}$ mole/1이었다. Graft율은 총선량과 선량율이 클 때 증가하였거나 또는 Polymer 팽윤제인 Ethylene dichloride가 monomer 혼합용액과 포화되었을 때 증가되었다. Acrylic acid가 Craft된 Polyvinyl Chloride 섬유는 흡습율, 열수축성, 용융성이 크게 증진되었고 Tensile properties는 original과 별차이를 나타내지 않았다.

  • PDF

혼화제 종류별로 제조된 콘크리트의 재 혼합 타설시 특성 분석 (Analysis of the Characteristics of Manufactured Concrete, according to the Type of Admixture used when Remixing and Placing it)

  • 류현기;신상용
    • 한국건축시공학회지
    • /
    • 제10권5호
    • /
    • pp.95-102
    • /
    • 2010
  • 최근 들어 경제성장과 산업기반 시설의 확충 등으로 인하여 타사의 레미콘을 종종 혼용 하는 경우가 있는데, 사용되는 혼화재료의 경우 제조회사별로 화학성분 및 첨가량의 차이가 있으므로 서로 다른 레미콘 제조회사의 콘크리트가 혼합되었을 시에 강도 저하 및 응결지연, 내구성 저하 등으로 인한 콘크리트의 성능 저하요인이 발생된다. 혼화제 종류별로 제조된 콘크리트의 재 혼합 타설시의 성능 분석을 한 결과로서 먼저 슬럼프는 모든 콘크리트에서 목표슬럼프 값을 만족하였으며, 공기량 역시 모든 콘크리트에서 목표 공기량을 만족 하였다. 블리딩량 및 블리딩률의 경우 전반적으로 유기산계와 같이 혼합된 콘크리트에서 높은 블리딩량을 나타내었다. 조기재령의 압축강도는 Plain의 나프탈린계에서 가장 큰 강도발현 경향을 나타내었고, 재 혼합 콘크리트에서는 5:5의 유기산계와 나프탈린계에서 가장 큰 압축 강도 발현 경향을 나타내었다. 표준재령의 경우 5:5의 재 혼합 콘크리트 중 나프탈린계+리그닌계를 혼합하였을 때 가장 큰 강도 발현 경향을 나타내었다. 인장강도 역시 압축강도와 유사한 경향을 나타내었다. 길이변화율은 전반적으로 Plain에 비하여 큰 건조수축 경향을 나타내었으며, 재 혼합콘크리트 7:3의 경우에 가장 큰 건조수축경향을 나타내었다. SEM사진 분석결과 재혼합 콘크리트에서 더 많은 미세공극들이 발견되었다. 결과적으로 한 종류의 레미콘을 이용하여 타설하였을 경우 보다 혼합사용 하였을 경우 응결지연 및 초기강도 저하현상이 나타나고, 더 큰 건조 수축 경향을 나타내어 일부 혼화제를 선별하여 혼합 사용하는 경우를 제외하고는 가능한 동일한 혼화제를 사용해야 할 것으로 판단된다.

상변화물질을 충전한 수평원통관 내에서 응고시 열전달특성 (Heat Transfer Characteristics for Inward Solidification in a Horizontal Cylinder Packed with P.C.M.)

  • 염성배;홍창식;이재성
    • 태양에너지
    • /
    • 제11권2호
    • /
    • pp.51-62
    • /
    • 1991
  • 본 연구에서는 용융된 파라핀을 채운 수평 원관의 관벽을 냉각할 때에 관내에서 일어나는 열전달현상을 다루었다. 관내의 파라핀을 고상과 액상으로 구분하여 고상층에 대해서는 열전도 모델을, 그리고 액상층에 대해서는 자연대류를 고려한 열전달모델을 세워 수치해석하였고 이 과정에 대한 실험을 행하여 얻은 응고형태로부터 방열량을 계산하였다. 아울러 초기의 용융파라핀의 온도와 관벽의 냉각온도가 응고에 미치는 영향을 고찰하였다. 방열과정에서 액상파라핀의 응고속도를 결정하는 요인은 관벽의 냉각온도와 초기액상온도이나 대부분의 액상현열이 응고 초기에 급속히 방출되기 때문에 관벽의 냉각온도가 지배적인 요인으로 작용하였다. 따라서 방열과정에서의 열전달은 고상층 내의 열전도에 의해서 이루어지게 된다. 실험에서 관찰한 응고형태에서는 상부에 빈 공간이 발견되었다. 이는 초기 액상온도가 응고초기에 급속히 떨어짐으로써 온도에 따른 액상의 밀도차로 인해 생긴 것이다. 고 액간의 밀도차로 인한 수축현상은 응고과정의 전반에 걸쳐서 고르게 일어나므로 그 영향을 응고형태에서 구별하여 파악하기는 어려웠다. Fourier수와 고상의 Stefan수를 종속변수로 사용하면 관벽의 냉각온도와 초기액상온도에 무관하게 응고량을 단일곡선으로 표현할 수 있었다.

  • PDF

산소분리를 위한 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막 제조 및 투과 특성 (Fabrication and Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes for Oxygen Separation)

  • 김종표;손수환;박정훈;이용택
    • Korean Chemical Engineering Research
    • /
    • 제49권6호
    • /
    • pp.804-809
    • /
    • 2011
  • $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 조성의 관형 분리막을 압출 성형 방법으로 제조하였다. 압출성형 직후 분리막의 TGA 분석결과 3단계의 무게감소로 첨가제와 탄산염이 분해되었고, 건조 수축율은 68 h 경과 후 변화가 없었으며 외경이 큰 분리막에서 높게 나타났다. 소결 후 분리막의 XRD 및 SEM 분석결과, 분리막은 단일상의 페롭스카이트 구조를 갖는 치밀한 막을 보였고, EDS 분석을 통해 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$와 유사한 성분함량을 가짐을 확인하였다. 두께 0.95 mm $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막의 압환강도(radial crushing strength)는 5.7 kgf/$mm^2$이였으며, $950^{\circ}C$에서 산소투과량은 146.85 mL/min($Jo_2$=2.33 mL/$min{\cdot}cm^2$)를 나타냈었다. 투과 측의 진공펌프 사용이 쓸개 가스를 활용한 것보다 산소 투과량 증진에 효과가 있음을 알 수 있었다.

수용액 매체에서 젤-케스팅 공정을 이용한 세라믹 코어 제조에 관한 연구(II) : 세라믹 코어 소결체의 물성 (Study on the fabrication of Ceramic Core using a Gel-casting Process in Aqueous Medium(II) : Physical Properties of Sintered Ceramic Core Body)

  • 김재원;김두현;김인수;유영수;최백규;김의환;조창용
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.465-471
    • /
    • 2001
  • 수용성 매체에서 젤-케스팅 공정을 이용하여 용융실리카를 기본으로 하는 다성분계 세라믹 코어 (中子)를 제조하고, 소결조건에 따른 제반 기계적 물성과 알칼리 부식용액에 의한 용출특성을 고찰하였다. 1000cP (at $50sec^{-1}$ ) 이하의 낮은 점도를 갖는 50vol%의 고농도 다성분계 세라믹 슬림의 제조가 가능하였다. 성형체는 안정화시킨 슬림을 몰드에 부어 상온에서 겔화시킨 후 $25^{\circ}C$, 80% 상대습도 분위기 하에서 48시간동안 건조시켜 제조하였으며 건조된 성형체에는 균열이 발생하지 않았다. 세라믹 코어 성형체의 소결온도가 상승할 수록 상온강도, 겉보기 밀도, 수축률은 시편의 기공도와 역비례하여 증가하였다. 세라믹 코어 소결체의 용출속도는 동일한 온도에서 알칼리 부식용액의 농도에 의존하였으며, 소결체의 기공도가 클수록 증가하였다.

  • PDF

3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성 (Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing)

  • 손배근;송훈
    • 한국건설순환자원학회논문집
    • /
    • 제9권3호
    • /
    • pp.330-337
    • /
    • 2021
  • 3D 프린팅의 기술발전으로 대형물 제작이 가능하게 되면서 이를 건축물에 적용하기 위한 연구가 활발하게 진행되고 있다. 건축물에서는 구조재와 비구조재로 구분되고 비구조재는 비정형 구조물 및 내·외장패널에 적용하기 유리하다. 3D 프린팅 재료는 기본적으로 시멘트 모르타르의 압출과 적층이 가능해야하므로 시멘트 혼화용 폴리머 와 경량재료의 사용이 필수적이다. 본 연구는 3D 프린팅 적용을 위해 시멘트 모르타르에 EVA 재유화형 분말수지를 사용하였다. 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성을 평가하기 위해 골재로는 규사8호와 경량재료로 경량골재, 중공글라스를 사용하여 난연 및 불연성능을 평가하였다. 연구결과, 규사8호 및 경량골재를 사용한 시험체가 충분한 난연 및 불연성능을 보였다. EVA 재유화형 분말수지를 혼입할 경우 5% 이하로 적용하여 사용하는 것이 유리하다.

고분자 유기하드마스크 합성에 따른 특성에 관한 연구 (A Study on Characteristics of Polymer Organic Hard Mask Synthesis)

  • 이우식
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.217-222
    • /
    • 2023
  • 본 논문은 제조공정이 단순하고, 공정시간도 매우 짧아 제조원가를 절감할 수 있는 고분자 유기하드마스크를 합성하는데 목적을 두었다. 승화 정제 장치를 통한 잔류금속을 측정한 결과, 9-Naphthalen-1-ylcarbazole(9-NC)은 4th zone에서 101.75ppb, 2-Naphthol(2-NA)은 5th zone에서 306.98ppb, 9-Fluorenone(9-F)는 4th zone에서 5th zone 사이에서 129.05ppb로 측정되었다. 그리고 합성된 유기하드마스크를 필터 시스템을 거친 후 잔류금속을 측정한 결과 9 ~ 7ppb 측정되었다. 또 열분석 변화를 측정한 결과, 2.78%로 감소하였고 분자량은 942로 측정되었고 탄소 함량은 89.74%이고 수율은 72.4%로 나타났다. 에칭 속도는 평균 18.22Å/s로 측정되었고 코팅 두께 편차는 평균 1.19로 측정되었다. 유기하드마스크의 입자크기가 0.2㎛ 이하에서는 입자가 존재하지 않았다. 코팅 속도를 1,000, 1,500, 1,800rpm으로 변화를 주어 코팅 두께를 측정한 결과, 수축률은 17.9에서 20.8%까지 측정되었고 코팅 결과 SiON과 접착력이 우수하고 유기하드마스크가 균일하게 도포되었음을 알 수 있었다.

태양에너지를 이용한 유용목재의 건조 (Seasoning of Commercial Wood Using Solar Energy)

  • 정희석;이형우;이남호;이상봉
    • Journal of the Korean Wood Science and Technology
    • /
    • 제16권4호
    • /
    • pp.10-39
    • /
    • 1988
  • This study investigated the temperatures and relative humidities in the semi-greenhouse type solar dryer with a black rock-bed heat storage and without heat storage and outdoor temperature and relative humidity at 9 a.m. and 2 p.m.. A comparison was made of the drying rates, final moisture contents, moisture content distributions, casehardening stresses, drying defects, volumetric shrinkage of dried lumber for solar- and air-drying from the green condition of mixtures of Douglas-fir, lauan, taun, oak and sycamore 25mm- and 50 mm-thick lumber during the same period for four seasons, and heat efficiencies for solar dryer with and without the heat storage for saving of heat energy and the cost of lumber drying using the solar energy. The results from this study were summarized as follows: I. The mean weekly temperatures in the solar dryers were 3 to $6^{\circ}C$ at 9 a.m. and 9 to $13^{\circ}C$ at 2 p.m. higher than mean outdoor temperature during all the drying period. 2. The mean weekly relative humidities in the solar dryers were about 1 to 19% at 9 a.m. higher than the outdoor relative humidity. and the difference between indoor and outdoor relative humidity in the morning was greater than in the afternoon. 3. The temperatures and relative humidities in the solar dryer with and without the heat storage were nearly same. 4. The overall solar insolation during the spring months was highest and then was greater in the order of summer, atumm, and winter month. S. The initial rate of solar drying was more rapid than that of air drying. As moisture content decreased, solar drying rate became more rapid than that of air drying. The rates of solar drying with and without heat storage were nearly same. The drying rate of Douglas-fir was fastest and then faster in the order of sycamore, lauan, taun and oak. and the faster drying rate of species, the smaller differences of drying rates between thicknesses of lumber. The drying rates were fastest in the summer and slowest in the winter. The rates of solar drying during the spring were more slowly in the early stage and faster in the later stage than those during the autumn. 6. The final moisture contents were above 15% for 25mm-thick air dried and about 10% for solar dried lumber, but the mean final MCs for 50mm-thick lumber were much higher than those of thin lumber. The differences of final MC between upper and lower course of pile for solar drying were greater than those of pile for air drying. The differences of moisture content between the shell and the core of air dried lumbers were greater than those of solar dried lumber, smallest in the drying during summer and greatest in the drying during winter among seasons. 7. Casehardening stresses of 25mm- and 50mm-thick dried lumber were slight, casehardening stress of solar dried lumber was severer than that of air dried lumber and was similar between solar dried lumber with and without heat storage, Casehardening stresses of lumber dried during spring were slightest and then slighter in the order of summer, autumn, and winter. Casehardening stresses of Douglas -fir, sycamore and lauan were slight, comparing with those of taun and oak. 8. Maximum initial checks of 25mm-thick lumber occurred above and below fiber saturation point and those of 50mm-thick lumber occurred in the higher moisture content than thin lumber. As the moisture content decreased, most of checks were closed and didn't show distinct difference of the degree of checks among drying methods. The degree of checks were very slight in case of Douglas-fir and lauan, and severe in case of taun and oak. The degree of checks for 50mm-thick lumber were severer than those for 25mm-thick lumber. 9. The degree of warpage showed severe in case of oak and sycamore lumber, but no warping was found in case of Douglas-fir, lauan and taun. 10. The volumetric shrinkages of taun and oak were large and medium in case of Douglas-fir, lauan and sycamore. 11. Heat efficiencies of solar dryer with heat storage were 6.9% during spring, 7.7% during summer, 12.1% during autumn and 4.1% during winter season. Heat efficiency of solar dryer with heat storage was slightly greater than that of without heat storage. As moisture content of lumber decreased, heat efficiency decreased.

  • PDF

에폭시 수지 모르터의 특성에 관한 실험적 연구 (Experimental Studies on the Properties of Epoxy Resin Mortars)

  • 연규석;강신업
    • 한국농공학회지
    • /
    • 제26권1호
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF