• Title/Summary/Keyword: shrinkage method

Search Result 747, Processing Time 0.023 seconds

Estimation of the Autogenous Shrinkage of the High Performance Concrete Containing Expansive Additive and Shrinkage Reducing Agent (팽창재와 수축저감제를 조차 사용한 고성능 콘크리트의 자기수축 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.123-130
    • /
    • 2007
  • This study investigated the fundamental properties and shrinkage properties of high performance concrete with water/binder ratio of 0, 30 and with combination of expansive additive and shrinkage reducing agent. According to the results, the fluidity of high performance concrete showed lower the using method in combination with expansive additive and shrinkage reducing agent than the separately using method of that, so the amount of superplasticizer increased when the adding ratio of expansive additive and shrinkage reducing agent increased. However the air content of concrete increased when used in combination with expansive additive and shrinkage reducing agent, so the amount of AE agent decreased. The compressive strength showed the highest at 5% of expansive additive, and decreased with an increase of the amount of shrinkage reducing agent. Furthermore, in order to reduce the shrinkage of high performance concrete, it was found that the using method in combination with expansive additive and shrinkage reducing agent was more effective than separately using method of that. Autogenous shrinkage was predicted using JCI model. Because JCI model is unable to consider the effect of EA and SRA, correction factor should be added to enhance the accuracy.

THE EFFECT OF VISCOSITY, SPECIMEN GEOMETRY AND ADHESION ON THE LINEAR POLYMERIZATION SHRINKAGE MEASUREMENT OF LIGHT CURED COMPOSITES (점도, 시편형태 그리고 접착의 유무가 광중합 복합레진의 선형중합수축의 측정에 미치는 영향)

  • Lee, In-Bog;Son, Ho-Hyun;Kwon, Hyuk-Chun;Um, Chung-Moon;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.457-466
    • /
    • 2003
  • The aim of study was to investigate the effect of flow, specimen geometry and adhesion on the measurement of linear polymerization shrinkage of light cured composite resins using linear shrinkage measuring device. Four commercially available composites - an anterior posterior hybrid composite Z100, a posterior packable composite P60 and two flowable composites, Filtek flow and Tetric flow-were studied. The linear polymerization shrinkage of composites was determined using 'bonded disc method' and 'non-bond-ed' free shrinkage method at varying C-factor in the range of 1∼8 by changing specimen geometry. These measured linear shrinkage values were compared with free volumetric shrinkage values. The viscosity and flow of composites were determined and compared by measuring the dropping speed of metal rod under constant load. In non-bonded method, the linear shrinkage approximated one third of true volumetric shrink-age by isotropic contraction. However, in bonded disc method, as the bonded surface increased the linear shrinkage increased up to volumetric shrinkage value by anisotropic contraction. The linear shrinkage value increased with increasing C-factor and approximated true volumetric shrinkage and reached plateau at about C-factor 5∼6. The more flow the composite was, reduced linear shrinkage was measured by compensation radial flow.

Hydro-mechanical analysis of non-uniform shrinkage development and its effects on steel-concrete composite slabs

  • Al-Deen, Safat
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Drying shrinkage in concrete caused by drying and the associated decrease in moisture content is one of the most important factors influencing the long-term deflection of steel-concrete composite slabs. The presence of profiled steel decking at the bottom of the composite slab causes non-uniform drying from top and bottom of the slab resulting non-uniform drying shrinkage. In this paper, a hydro-mechanical analysis method is proposed to simulate the development of non-uniform shrinkage through the depth of the composite slab. It also demonstrates how this proposed analysis method can be used in conjunction with previously presented structural analysis model to calculate the effects of non-uniform shrinkage on the long-term deflection of the slab. The method uses concrete moisture diffusion model to simulate the non-uniform drying of composite slab. Then mechanical models are used to calculate resulting shrinkage strain from non-uniform drying and its effect on the long-term behaviour of the composite slabs. The performance of the proposed analysis method is validated against experimental data.

Shrinkage analysis of reinforced concrete floors using shrinkage-adjusted elasticity modulus

  • Au, F.T.K.;Liu, C.H.;Lee, P.K.K.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.437-456
    • /
    • 2007
  • The shrinkage of large reinforced concrete floors often gives rise to cracking problems. To identify the problematic areas, shrinkage movement analysis is often carried out by finite element method with proper creep and shrinkage models using step-by-step time integration. However as the full stress history prior to the time interval considered is necessary, with the increase in the number of time intervals used, the amount of computations increases dramatically. Therefore a new method using the shrinkage-adjusted elasticity modulus (SAEM) is introduced so that analysis can be carried out using one single step. Examples are presented to demonstrate its usefulness.

Cavity Design Method for Injection-Molded Spur Gears

  • Kim, Choong-Hyun;Lee, Sung-Chul;Ahn, Hyo-Sok;Chong, Tae-Hyong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.65-71
    • /
    • 2000
  • Mold cavities of gears should be made larger than the product specification since plastics shrink when changing from a molten to a solid state. For injection molded spur gears, two design methods for the compensation of shrinkage are widely used. One is the module correction method and the other is the pressure angle correction method. Both methods are based on the assumption that shrinkage occurs toward the center of a molded gear. This paper deals with the shrinkage rate and proposes a method of designing gear cavity derived from the measured shrinkage rates which govern the outside diameter, the tooth depth and the tooth thickness of a molded gear. The proposed method imposes no restriction on the shrinkage direction and provides a cavity with all of the fundamental gear design parameters.

  • PDF

Curvature and Deflection of Reinforced Concrete Member Due to Shrinkage (건조수축에 의한 철근콘크리트 부재의 곡률과 처짐)

  • 김진근;이상순;김민수;신병천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.333-338
    • /
    • 1998
  • Deflections due to warping are frequently ignored in design calculation. For thin member, shrinkage deflection results in important and objectionable additions to the dead load deflection. Thus it may be desirable to consider warping effects due to shrinkage for thin member. Some methods for computing shrinkage curvature have been proposed by many researchers. The approximate methods widely used in the recent years are the equivalent tensile force method. Miller's method and Branson's method (an empirical method based on Miller's approach extended to include doubly reinforced beams). These method were somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, the approximate method for computing shrinkage curvature are reviewed and new approximate method based on the Age-Adjusted Effective Modulus method is proposed.

  • PDF

Effect of Autogenous Shrinkage on Shrinkage behavior in High Stength Concrete (자기건조수축을 고려한 고강도 콘크리트의 수축변형 특징에 관한 연구)

  • Paek, Nak-Seung;Cha, Soo-Won;Lee, Seong-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.429-432
    • /
    • 2006
  • The shrinkage mechanism of high strength concrete is different from that of normal concrete. The shrinkage of normal concrete is subjected to evaporate moisture in concrete, but most shrinkage in high strength concrete is caused by chemical reaction. To analyze shrinkage of concrete exactly, it is necessary to divide drying shrinkage with autogenous shrinkage in terms of degree of hydration, especially in concrete with low W/C ratio. The proposed method can provide a rational basis for prediction of shrinkage in high strength concrete structure.

  • PDF

Influence of Shrinkage Reducing Agent on Drying Shrinkage of Mortar (모르타르의 건조수축에 미치는 수축저감제의 영향)

  • 이승한;정용욱;박정섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.563-566
    • /
    • 2000
  • The study is to examine the drying shrinkage reducing method of mortar using organic shrinkage reducing agent. According to the experiment result, when 2% and 4% of organic shrinkage reducing agent were added, 40% and 50% of the shrinkage rate of mortar were obtained. Also, in the cracking test of plate-shape specimen, the usage of shrinkage agent 2% reduced about 60% of the total cracking length compare to total cracking length the usage of portland cement, the usage of shrinkage agent 4% was not happened crack until 90 days. Accordingly, the usage of shrinkage agent show good effect in prevention of crack.

  • PDF

Shrinkage Model Selection for Portfolio Optimization on Vietnam Stock Market

  • NGUYEN, Nhat;NGUYEN, Trung;TRAN, Tuan;MAI, An
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.135-145
    • /
    • 2020
  • This paper provides the practical application of a linear shrinkage framework on Vietnam stock market. The cumulative data points observed in this analysis are 468 weeks from January 2011 to December 2019. All the companies listed on Ho Chi Minh City Stock Exchange (HOSE), except the companies under two years period from Initial Public Offering (IPO), are considered. The cumulative number of stocks picked is therefore 350 companies. The VNINDEX, which is the Vietnam Stock Index, is used as a reference index for shrinking to a single-index model. The empirical results show that the shrinkage of covariance matrix for portfolio optimization gives the promising results for the investors on Vietnam stock market. The shrinkage method helps the investors to produce the optimal portfolio in the sense of having higher profit with lower levels of risk compared to the portfolio of the traditional SCM method. Moreover, the portfolio turnover of shrinkage method is always kept at low magnitudes, and this makes the shrinkage portfolios save much transaction costs and reduce the liquidity risks in the trading process. In addition, the ability of shrinkage method in making profit is once again confirmed by the Alpha coefficient that achieves a high positive value.

Numerical Analysis of Shrinkage Cavity Formation using the Modified Fluid Critical Solid Fraction Method (유동한계 고상율법을 이용한 수축공 생성의 수치해석)

  • Lee, Jae-Kyung;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.555-562
    • /
    • 1998
  • Modified fluid critical solid fraction method was utilized as a prediction parameter to describe the shrinkage formation including the position, shape and amount of shrinkage cavities. A numerical scheme was implemented adapting this method for the evaluation of solidification defects in various casting processes. In the present numerical code, the form of shrinkage cavity can be simultaneously determined when an isolated loop is predicted to occur by the fluid critical solid fraction method. An auxiliary parameter, shrinkage potential, was also used in order to calculate the amount of residual liquid during solidification. Solidification analysis was carried out for the validation of the present scheme. It was shown that the calculated results were in good agreement with those of practical casting runs in all of the casting processes envolved in the present research. It may be concluded that the present program successfully predicts the detailed shrinkage formation behavior without the consideration of interdendritic fluid flow analysis.

  • PDF