• Title/Summary/Keyword: shrinkage control

Search Result 350, Processing Time 0.026 seconds

The origins and evolution of cement hydration models

  • Xie, Tiantian;Biernacki, Joseph J.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.647-675
    • /
    • 2011
  • Our ability to predict hydration behavior is becoming increasingly relevant to the concrete community as modelers begin to link material performance to the dynamics of material properties and chemistry. At early ages, the properties of concrete are changing rapidly due to chemical transformations that affect mechanical, thermal and transport responses of the composite. At later ages, the resulting, nano-, micro-, meso- and macroscopic structure generated by hydration will control the life-cycle performance of the material in the field. Ultimately, creep, shrinkage, chemical and physical durability, and all manner of mechanical response are linked to hydration. As a way to enable the modeling community to better understand hydration, a review of hydration models is presented offering insights into their mathematical origins and relationships one-to-the-other. The quest for a universal model begins in the 1920's and continues to the present, and is marked by a number of critical milestones. Unfortunately, the origins and physical interpretation of many of the most commonly used models have been lost in their overuse and the trail of citations that vaguely lead to the original manuscripts. To help restore some organization, models were sorted into four categories based primarily on their mathematical and theoretical basis: (1) mass continuity-based, (2) nucleation-based, (3) particle ensembles, and (4) complex multi-physical and simulation environments. This review provides a concise catalogue of models and in most cases enough detail to derive their mathematical form. Furthermore, classes of models are unified by linking them to their theoretical origins, thereby making their derivations and physical interpretations more transparent. Models are also used to fit experimental data so that their characteristics and ability to predict hydration calorimetry curves can be compared. A sort of evolutionary tree showing the progression of models is given along with some insights into the nature of future work yet needed to develop the next generation of cement hydration models.

Early age behavior analysis for reinforced concrete bridge pier

  • Wang, Xianfeng;Li, Dawang;Han, Ningxu;Xing, Feng
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1041-1051
    • /
    • 2016
  • In this study, the construction of a reinforced concrete bridge pier was analyzed from durability point of view. The goal of the study is to analyze the crack iniation condition due to construction and present some recommendations for construction conditions of the reinforced concrete bridge pier. The bridge is located at the western port area of Shenzhen, where the climate is high temperature and humidity. To control the cracking of concrete, a construction simulation was carried out for a heat transfer problem as well as a thermal stress problem. A shrinkage model for heat produced due to cement hydration and a Burger constitutive model to simulate the creep effect are used. The modelling based on Femmasse(C) is verified by comparing with the testing results of a real underground abutment. For the bridge pier, the temperature and stress distribution, as well as their evolution with time are shown. To simulate the construction condition, four initial concrete temperatures ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$) and three demoulding time tips (48h, 72h, 96h) are investigated. From the results, it is concluded that a high initial concrete temperature could result in a high extreme internal temperature, which causes the early peak temperature and the larger principle stresses. The demoulding time seems to be less important for the chosen study cases. Currently used 72 hours in the construction practice may be a reasonable choice.

A Study for Optimum Joint Spacing in Jointed Concrete Pavement (줄눈 콘크리트포장의 적정 줄눈간격에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.69-77
    • /
    • 2005
  • Joint spacing is a potent influence in increasing the long term performance of jointed concrete pavement slabs through the control of tensile stress, sealant failure and Load Transfer Efficiency (LTE). Internal Joint Spacing is an empirical and fixed method therefore this study will present the optimum joint spacing considerations depending on various climactic conditions. Calculating the optimum joint spacing eliminates random cracking due to the effect of the environmental loads such as the early behavior of drying shrinkage and heat hydration. Optimum joint spacing is calculated so as not to cause pavement distress by the deterioration of LTE by long term pavement movement. This study shows that the provisional joint spacing is 6-8m. Pavement Distress Prediction Models show that pavement distress has no effect on joint spacing of 8m.

  • PDF

Effects of Zn-L-Selenomethionine on Carcass Composition, Meat Characteristics, Fatty Acid Composition, Glutathione Peroxidase Activity, and Ribonucleotide Content in Broiler Chickens

  • Chaosap, Chanporn;Sivapirunthep, Panneepa;Takeungwongtrakul, Sirima;Zulkifli, Razauden Mohamed;Sazili, Awis Qurni
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.338-349
    • /
    • 2020
  • The effects of organic Zn-L-selenomethionine (Zn-L-SeMet) at 0.3 ppm on carcass composition, meat characteristics, fatty acid composition, glutathione peroxidase activity, and ribonucleotide content were compared against the commercial inorganic sodium selenite (Na-Se) and the combination of the two, in commercial broilers. A total of 540 one day-old chicks were assigned at random to 3 dietary treatments : i) commercial inorganic selenium as control or T1, ii) a 1:1 ratio of inorganic and organic selenium as T2, and iii) organic selenium as T3. Carcass composition, meat characteristics, cholesterol content, fatty acid composition, and ribonucleotide content were generally unaffected by treatments. However, discrepancy were significantly observed in glutathione peroxidase activity (GSH-Px) and water holding capacity, with organic selenium showing higher glutathione peroxidase activity (p<0.01) and lower shrinkage loss (p<0.05), respectively. These findings could be explained by the contribution of organic selenium in bioavailability of GSH-Px. However, having conducted in a commercial close house system with sufficient amount of nutritional supplementation, the present study demonstrated little or no effects of organic Zn-L-SeMet on meat characteristics, fatty acid composition, and ribonucleotide content (flavor characteristic) in broiler chickens.

A study on the Development of Automatic Drying System of Ginseng (인삼의 자동건조시스템 개발에 관한 연구)

  • Kang, Hyun-Ah;Chang, Kyu-Seob;Chang, Dong-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.764-768
    • /
    • 1993
  • This study was developed a computer-controlled automatic drying system. In order to control automatically the temperature, relative humidity weight of the sample, drying system with computer and connecting parts such as microcomputer, PC-Lab card, Op. Amp., and relay system were developed for controlling the heater, fan, humidifier and dehumidifier. Using this system, drying characteristic mechanism of ginseng were investigated. The increase of drying temperature decreased Hunter L value and increased a and b value. The hardness and shrinkage rate of white ginseng had a increasing tendency with the increase of drying temperature. Crude saponin content was not affected by drying temperature and relative humidity.

  • PDF

A Study on the Behavior Characteristics of Residual Stress of the Thin Butt Weldment by Mechanical Tensioning Method (인장법에 의한 박판 판계 용접부의 잔류 응력 거동 특성에 관한 연구)

  • Kim, Ha-Keun;Kim, Kyung-Ku;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.57-57
    • /
    • 2010
  • For thin panel welded structure, the various welding distortions were found due to the low resistance against welding deformation. Especially, buckling distortion induced in the thin panel welded structure produce severe problems related to cost in production stage and safety in service life. So, many researches including mechanical and thermal tensioning method for preventing the occurrence of buckling distortion in the production stage have been performed. The purpose of this study is to identify the behavior of longitudinal residual stress at the SA butt weldment with thin plate of 6mm thickness under tension load by 3 dimensional FEA. For it, mesh design for 3D FEA was constructed with 20 nodes brick element for butt weldment and 8 nodes shell element for base metal. According to FEA results, the longitudinal compressive strain inducing tensile residual stress at the butt weldment decreased. It was because the compressive thermal strain in way of weldment was reduced by tension load. The control effect of residual stress increased with an increase in tension load. So, if the amount of tension load applied to the weldment exceeds 1.5 times of longitudinal shrinkage force, the amount of longitudinal residual stress decreased below the critical value inducing the buckling distortion at the SA butt weldment. Its validity was verified by experiment.

  • PDF

Fabrication of 3Y-TZP/SUS316 Functionally Graded Material by Slip Casting Method Using Alumina Mold (알루미나몰드를 사용한 슬립캐스팅법에 의한 3Y-TZP/SUS316계 경사기능재료의 제조)

  • 여정구;정연길;이세훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 1997
  • 3Y-TZP/SUS316 Functionally Graded Material (FGM) was fabricated by slip casting method. Alumina mold was used to overcome problems of gypsum mold in slip casting process, and the optimal dispersion con-ditions of 3Y-TZP/SUS316 binary slurries was determined using electrokinetic sonic amplitude and a viscometer, and observing sedimentation behavior. The properties of the specimens casted by gypsum mold and alumina mold were compared in terms of changes in shrinkage rate, drying and sintering conditions, and microstructure. It was found that the specimens obtaine from the alumina mold showed a clean surface, easier thickness control of each layer, and higher productivity. Especially, no degradation was observed in the SUS316 prepared using alumina mold. Thus it is desirable to use porous alumina mold rather than gyp-sum mold for the slip casting of 3Y-TZP/SUS316-FGM.

  • PDF

Spreadability observation of the denture adhesive by the amount of the water (수분함량에 따른 의치접착제의 확장성 관찰)

  • Kim, Jong-Moon;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.37 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Purpose: In this study, Spreadability of denture adhesive in accordance with the saturation level of saliva, respectively, by using the resin plate and the glass was measured thickness and Spreadability. Methods: Examine the spreadability of denture adhesive in accordance with the saturation level of saliva, respectively, by using the resin plate and the glass was measured thickness and Spreadability. Also, by measuring the adhesive strength according to the amount of saliva, and the edentulous patients using denture adhesive and dry mouth patients attempt to provide clinical information of the denture adhesive. Therefore, by using the relatively low shrinkage cold curing resin, after fabricating specimen of plate form, for 7 days, it was immersed in water. Results: For the control group only denture adhesive, an artificial saliva for the experimental group were injected in $0.1m{\ell}$, $0.2m{\ell}$ and $0.3m{\ell}$ of the denture adhesive on the surface, experimental results of the investigation of the 10 times the tensile bond strength of the specimens in each group was obtained the following results. Conclusion: As the time to pressure increase in the same amount of saliva was found that the amount coming out of the denture adhesive, as the amount of saliva in the same pressure increase coming out of many denture adhesives. And the greater the pressure came out a lot of denture adhesives. Spreadability in measuring saliva contact with $0.1m{\ell}$ and $2m{\ell}$ and $3m{\ell}$ group pressured the diameter of the circular was the denture adhesive is small when compared to the group without adding the pressure of 2kg and 3kg put the saliva. The size of the circle is the same amount of saliva denture adhesive spread more pressure showed a greater increase.

Carbon Fiber/Aluminum Composite Fabrication Using Wettability Control (젖음성 제어를 이용한 탄소섬유/알루미늄 복합재료 제조)

  • Lee, Yongbeom;Park, Sangjin;Han, Jun Hyun
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.254-259
    • /
    • 2015
  • Carbon fiber/aluminum (CF/Al) composites were successfully fabricated without pressure casting using wettability modification of carbon fiber. The wettability of liquid aluminum on carbon fibers was enhanced through electroless plating of copper on carbon fibers. Liquid aluminum was well infiltrated into carbon fiber bundles with Cu coating layer due to low wetting angle, and a lot of pores that existed in CF/Al composite without Cu coating on CF were greatly removed. However, a few tiny pores existed in carbon fiber bundles, which is due to not bad wettability between CF and Al but shrinkage cavity that was generated during cooling of CF/Al composite. The tiny pores could be effectively removed by a subsequent rolling.

Preparation of NASIglasses by Sol-Gel Process (솔-젤법에 의한 NASIglass의 제조)

  • 김희주;강은태;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1357-1368
    • /
    • 1995
  • Nasigels of composition Na0.75Zr2PSi2O12 and Na3Zr2PSi2O12 have been synthesized by the sol-gel technique using metal alkoxide precursors. The monolithic dry gels of Na0.75Zr2PSi2O12 with no crack have been prepared by the control of the shrinkage rte, but gels of Na3Zr2PSi2O12 were impossible to prepare without cracking. The gels treated up to 80$0^{\circ}C$ led to the formtion of glass but the glasses were converted to the crystalline phases at above this temperature. Crystaline phases precipitated from the Na0.75Zr2PSi2O12 glass were NASICON-like phase, Na2Si2O5, and free Zirconia. Phase that precipitated from the Na3Zr2PSi2O12 was only rhombohedral NASICON. For Na0.75Zr2PSi2O12 gels, framework of PO4 tetrahedra and SiO4(PO4) tetrahedra formed at low temperature but changed to that of SiO4 and SiO4(PO4) tetrahedras as it were crystallized. In the case of Na3Zr2PSi2O12 gel, framework of isolated PO4 and SiO4 tetrahedras formed at low temperature but changed to SiO4(PO4) tetrahedra framework which usually formed in the NASICON crystal after crystallization at high temperature. The gels treated up to 80$0^{\circ}C$ contained the residual water. The ionic conduction was attributed to the motion of proton and Na+ ion at low (up to 150~20$0^{\circ}C$) and high temperatures, respectively. As the temperature of heat treatment increased, ionic conductivity gradaully increased with the extent of precipitation of crystalline phase.

  • PDF