• 제목/요약/키워드: short-chain dehydrogenase

검색결과 30건 처리시간 0.032초

Purification and Reaction Mechanism of Rat Brain Succinic Semialdehyde Dehydrogenase

  • Kim, Kyu-Tae;Joo, Chung-No
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.162-169
    • /
    • 1995
  • Rat brain succinic semialdehyde dehydrogenase (EC 1.2.1.24 SSADH) activity was detected in mitochondrial, cytosolic and microsomal fractions. Brain mitochondrial soluble SSADH was purified by ammonium sulfate precipitation, DEAE Sephacel, and 5'-AMP Sepharose 4B affinity chromatography. The purified enzyme was shown to consist of four identical subunits, and the molecular weight of a subunit was 55 kD. The $K_m$ for short chain aliphatic aldehydes and aromatic aldehydes were at the $10^{-3}M$ level but that for succinic semialdehyde was 2.2 ${\mu}M$. Either $NAD^+$ or $NADP^+$ can be used as a cofactor but the affinity for $NAD^+$ was 10 times higher than that for $NADP^+$. The brain cytosolic SSADH was also purified by ammonium sulfate precipitation, DEAE Sephacel, Blue Sepharose CL-6B and 5'-AMP Sepharose 4B affinity chromatography and its Km for short chain aliphatic aldehydes was at the $10^{-3}$ level but that for succinic semialdehyde was 3.3 ${\mu}M$. $NAD^+$ can be used as a cofactor for this enzyme. We suppose that both enzyme might participate in the oxidation of succinic semialdehyde, which is produced during GABA metabolism. The activity of both cytosolic and mitochondrial SSADH was markedly inhibited when the concentration of succinic semialdehyde was high. The reciprocal plot pattern of product inhibition and initial velocity indicated a sequential ordered mechanism for mitochondrial matrix SSADH. Chemical modification data suggested that amino acid residues such as cysteine, serine and lysine might participate in the SSADH reaction.

  • PDF

A Case of Short-chain Acyl-CoA Dehydrogenase Deficiency Detected by Newborn Screening

  • Park, Kyungwon;Ko, Jung Min;Jung, Goun;Lee, Hee Chul;Yoon, So Young;Ko, Sun Young;Lee, Yeon Kyung;Shin, Son Moon;Park, Sung Won
    • 대한유전성대사질환학회지
    • /
    • 제15권1호
    • /
    • pp.40-43
    • /
    • 2015
  • Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an autosomal recessive mitochondrial disorder of fatty acid oxidation associated with mutations in the ACADS gene. While patients diagnosed clinically have a variable clinical presentation, patients diagnosed by newborn screening are largely asymptomatic. We describe here the case of a 1-year-old male patient who was detected by newborn screening and diagnosed as SCAD deficiency. Spectrometric screening for inborn errors of metabolism at 72hrs after birth showed elevated butyrylcarnitine (C4) level of 1.69 mol/L (normal, <0.83 mol/L), C4/C2 ration of 0.26 (normal, <0.09), C5DC+C60H level of 39 mol/L (normal, <0.28 mol/L), and C5DC/C8 ration of 7.36 (normal, <4.45). The follow-up testing at 18 days of age were performed: liquid chromatography tandem mass spectrometry (LC-MS/MS), urine organic acids, and quantitative acylcarnitine profile. C4 carnitine was elevated as 0.91; urine organic acid analysis showed elevated ethylmalonic acid as 62.87 nmol/molCr (normal, <6.5), methylsuccinate 6.81 nmol/molCr (normal, not detected). Sequence analysis of ACADS revealed a homozygous missense mutation, c.164C>T (p.Pro55Leu). He is growing well and no episodes of seizures or growth retardation had occurred.

Arthrobacter simplex의 Steroid ${\Delta}^1$-dehydrogenase의 유도와 유도성 스테로이드의 성질 (The Induction of Steroid ${\Delta}^1$-dehydrogenase from Arthrobacter simplex IAM 1660)

  • 배무;오영주;민태경;이미경
    • 한국미생물·생명공학회지
    • /
    • 제19권3호
    • /
    • pp.242-247
    • /
    • 1991
  • Arthrobacter simplex IAM 1660의 스테로이드 $\Delta^1$-dehydrogenase에 대한 각종 steroid의 유도조건과 효과를 검토하였다. 그 결과 시험한 스테로이드 중 hydrocortisone이 가장 큰 효과를 나타냈고 progesterone, prednisolone, prednisone, androstenstendione의 순으로 유도효과를 보였고, 스테롤에 의해서는 유도효과가 낮았다. 유도 스테로이드의 특성으로는 스테로이드 모핵 C-3위가 수산기인 것보다 캐톤기이며 C-4위에 이중결합이 존재하고 스테로이드 D고리의 측쇄가 짧은 것이 유도 효과가 높았다.

  • PDF

A Preliminary Analysis of Secreted Proteins from Bifidobacterium pseudocatanulatum BP1 by Two-Dimensional Gel Electrophoresis

  • Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.366-369
    • /
    • 2008
  • Proteins secreted from bifidobacteria are believed to play important roles in human intestines via interacting with different host cells. In this respect, proteins secreted from Bifidobacterium pseudocatanulatum BP1, which has been rarely studied, were analyzed by two-dimensional gel electrophoresis (2DE). Using this approach, approx-imately 21 protein spots on a 2DE gel were detected and 10 of these spots were identified by mass spectrometry. Five spots were identified as hypothetical proteins and the remaining 5 spots were identified as a putative iron-side-rophore binding lipoprotein, a short-chain dehydrogenase/reductase SDR, an exonuclease, cytochrome P450 hydroxylase, and a putative dehydrogenase. The identification of secreted putative iron-siderophore binding lipoprotein was highly interesting since it is an important protein that is involved in ferric iron uptake in pathogenic bacteria. This finding could accelerate studies on the probiotic effect of Bifidobacterium by explaining the competition between bifidobacteria and intestinal pathogens for ferric iron.

Agronomic characteristics of stay-green mutant derived from an early-maturing rice variety 'Pyeongwon'

  • Won, Yong-Jae;Ji, Hyeon-So;Ahn, Eok-Keun;Lee, Jeong-Heui;Jung, Kuk-Hyun;Lee, Sang-Bok;Hong, Ha-Cheol;Hyun, Ung-Jo;Ha, Woon-Goo;Kim, Myeong-Ki;Kim, Byeong-Ju
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.72-72
    • /
    • 2017
  • We found a new stay-green mutant from 'Pyeongwon' which is an early-maturing rice variety in Korea. The mutant showed green leaves after grain ripening period and it maintained higher SPAD value than wild type rice plant and original variety 'Pyeongwon'. The stay-green trait in rice, three genes have been identified up to date. The non-yellow coloring1 (NYC1) gene encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The non-yellow coloring3 (NYC3) gene encodes a plastid-localizing alpha/beta hydrolase-fold family protein with an esterase/lipase motif. The Sgr gene encodes a novel chloroplast protein and regulates the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of chlorophylls and LHCPs during senescence. After sequencing the PCR products, we found a single nucleotide variation($A{\rightarrow}T$) in the NYC1 gene, which changes the amino acid lysine to methionine. The NYC1 gene encodes a short-chain dehydrogenase/reductase(SDR) protein. And we confirmed the co-segregation between SNP and stay-green trait from genotyping the progenies of the mutant.

  • PDF

Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

  • Fassah, Dilla Mareistia;Jeong, Jin Young;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권4호
    • /
    • pp.537-547
    • /
    • 2018
  • Objective: This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods: Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results: Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p<0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Conclusion: Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.

Hepatoprotective Effects of Potato Peptide against D-Galactosamine-induced Liver Injury in Rats

  • Ohba, Kiyoshi;Han, Kyu-Ho;Liyanage, Ruvini;Nirei, Megumi;Hashimoto, Naoto;Shimada, Ken-ichiro;Sekikawa, Mitsuo;Sasaki, Keiko;Lee, Chi-Ho;Fukushima, Michihiro
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1178-1184
    • /
    • 2008
  • The effect of some peptides on hepatoprotection and cecal fermentation against D-galactosamine (GalN)-treated rats was studied. In acute hepatic injury tests, serum alanine aminotransferase (ALT), aspartate aminotranferase (AST), and lactic dehydrogenase (LDH) activities were remarkably increased after injection of GalN. However, potato and soybean peptides significantly decreased GalN-induced alterations of serum ALT and AST activities. Hepatic thiobarbituric acid-reactive substance (TBARS) concentration in GalN-treated groups fed potato and soybean peptides was significantly lower than that in GalN-treated control group. Hepatic glutathione level in the GalN-treated group fed potato peptide was significantly higher than that in GalN-treated control group. Furthermore, cecal Lactobacillus level in GalN-treated groups fed potato and soybean peptides was significantly higher than that in GalN-treated control group, and cecal short-chain fatty acid concentrations in GalN-treated group fed potato peptide were significantly higher than in GalN-treated control group. These results indicate that potato peptide may improve the cecal fermentation and prevent the GalN-induced liver damage in rats.

Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions

  • Kwon, Young-Yon;Choi, Kyung-Mi;Cho, ChangYeon;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • 제38권12호
    • /
    • pp.1054-1063
    • /
    • 2015
  • Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 ($sdh1{\Delta}$, $sdh2{\Delta}$, $sdh4{\Delta}$, $cor1{\Delta}$, $cyt1{\Delta}$, $qcr7{\Delta}$, $qcr8{\Delta}$, $rip1{\Delta}$, $cox6{\Delta}$, $cox7{\Delta}$, $cox9{\Delta}$, $atp4{\Delta}$, $atp7{\Delta}$, and $atp17{\Delta}$) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-$F_1F_0$-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.