• Title/Summary/Keyword: short wave infrared (SWIR)

Search Result 16, Processing Time 0.036 seconds

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • Lee, Jae-Ung
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

A Defective Detector Suppression in the Short Wave Infrared Band of SPOT/VEGETATION-1

  • Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2003
  • Since SPOT4 satellite contained VEGETATION 1 sensor launched, the noise in VEGETATION data was occasionally arisen a difficulty for the data traitement. Blind line noise types were studied in VEGETATION-l short wave infrared channel(SWIR). In order to provide a precis product, the procedure for removing this noise is strongly recommended. In the case that the blind values are clearly distinguished from contamination-free values a simple threshold method was applied, while a changeable threshold method was used for the blind value mixed with contamination-free values. New algorithm presented in this study is consists of two method for each type of SWIR blind. After removing blind line, there were again some residual pixels of blind, because the threshold is not determinated sufficiently low. Lower threshold could remove the blind line as well as the contamination-free pixels. Nevertheless, the results showed a good qualitative improvement as compared with other algorithm.

Short-Wave Infrared Fluorescence-Guided Surgery Using Indocyanine Green in a Dog with a Cutaneous Mast Cell Tumor

  • Su-Hyeon Kim;Sungin Lee
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.395-399
    • /
    • 2022
  • A 6-year-old spayed, female golden retriever dog was presented with a skin mass on the dorsal region of the right carpus. The cytology result of the region revealed characteristics of mast cell tumors (MCTs). Short wave-infrared fluorescence-guided surgery using Indocyanine green (ICG) was performed to determine the surgical margin of the tumor. ICG was injected intravenously 24 hours before the surgery and the patient was hospitalized and carefully monitored. During the surgery, ICG fluorescence-based surgery was performed to identify the tumor and the surgical margin. The tumor was visible, and the skin mass was resected using NIR device for the guidance of the surgical margin of the tumor. Once the resection was complete, the surgical site was again inspected with SWIR fluorescence imaging to identify residual tumor cells. The resected tumor, using ICG navigation, was classified as low-grade cutaneous MCT and the margin was complete on the histopathological result. We report herein a case of resection of a cutaneous MCT in a dog using SWIR fluorescence imaging ICG which can be potentially used for the identification of tumors and evaluation of the surgical margin for complete resection.

Target Tracking based on Kernelized Correlation Filter Using MWIR and SWIR Sensors (MWIR 및 SWIR 센서를 이용한 커널상관필터기반의 표적추적)

  • Sungu Sun;Yuri Lee;Daekyo Seo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • When tracking small UAVs and drone targets in cloud clutter environments, MWIR sensors are often unable to track targets continuously. To overcome this problem, the SWIR sensor is mounted on the same gimbal. Target tracking uses sensor information fusion or selectively applies information from each sensor. In this case, parallax correction using the target distance is often used. However, it is difficult to apply the existing method to small UAVs and drone targets because the laser rangefinder's beam divergence angle is small, making it difficult to measure the distance. We propose a tracking method which needs not parallax correction of sensors. In the method, images from MWIR and SWIR sensors are captured simultaneously and a tracking error for gimbal driving is chosen by effectiveness measure. In order to prove the method, tracking performance was demonstrated for UAVs and drone targets in the real sky background using MWIR and SWIR image sensors.

Proximate Content Monitoring of Black Soldier Fly Larval (Hermetia illucens) Dry Matter for Feed Material using Short-Wave Infrared Hyperspectral Imaging

  • Juntae Kim;Hary Kurniawan;Mohammad Akbar Faqeerzada;Geonwoo Kim;Hoonsoo Lee;Moon Sung Kim;Insuck Baek;Byoung-Kwan Cho
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1150-1169
    • /
    • 2023
  • Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

Estimation of Forest LAI in Close Canopy Situation Using Optical Remote Sensing Data

  • Lee, Kyu-Sung;Kim, Sun-Hwa;Park, Ji-Hoon;Kim, Tae-Geun;Park, Yun-Il;Woo, Chung-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.305-311
    • /
    • 2006
  • Although there have been several attempts to estimate forest LAI using optical remote sensor data, there are still not enough evidences whether the NDVI is effective to estimate forest LAI, particularly in fully closed canopy situation. In this study, we have conducted a simple correlation analysis between LAI and spectral reflectance at two different settings: 1) laboratory spectral measurements on the multiple-layers of leaf samples and 2) Landsat ETM+ reflectance in the close canopy forest stands with fieldmeasured LAI. In both cases, the correlation coefficients between LAI and spectral reflectance were higher in short-wave infrared (SWIR) and visible wavelength regions. Although the near-IR reflectance showed positive correlations with LAI, the correlations strength is weaker than in SWIR and visible region. The higher correlations were found with the spectral reflectance data measured on the simulated vegetation samples than with the ETM+ reflectance on the actual forests. In addition, there was no significant correlation between the forest.LAI and NDVI, in particular when the LAI values were larger than three. The SWIR reflectance may be important factor to improve the potential of optical remote sensor data to estimate forest LAI in close canopy situation.

Mineral Identification and Field Application by Short Wave Infrared (SWIR) Spectroscopy (단파장적외선 분광분석법을 이용한 광물동정과 현장적용성)

  • Kim, Chang Seong;Kim, Yong-Hwi;Choi, Seon-Gyu;Ko, Kwang-Beom;Han, Kyeong-Soo
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • The analytical conditions including surface state, moisture effect, and device condition were investigated for applying Short Wave Infrared(SWIR) spectroscopy to the field survey. Among the three surface state of samples (exposed surface, cutting face and powder), both spectra from the exposed surface and cutting face are almost identical whereas spectral variation was detected in powder sample. Over 24-hours-dryring of the wet sample at room temperature, the samples show a similar spectrum with that of dry condition. The result suggests that outcrop samples mighty be dried for 24 ~ 48 hours depending on the wetness of outcrop. The bright minerals could produce stable spectra with 10 times measurements as default value of the device under SWIR spectroscopy but the dark minerals would require about 10 seconds, which corresponds to 100 times measurements to get the reliable spectra. The position and shape 2,160 ~ 2,330 nm and/or other spectral features of hydrothermal alteration minerals by SWIR spectroscopy could be used for a classification of hydrothermal alteration zone in the field. Absorption peaks in 2,160 ~ 2180 nm are useful for identifying (advanced) argillic zone by spectral characteristics of kaoline, dickite, pyrophyllite, and alunite. Absorption peaks in 2,180 ~ 2,230 nm are able to define muscovite, sericite, and smectite, which are key alteration minerals in phyllic zone. Absorption peaks in 2,230 ~ 2,270 nm can be used to recognize prophylitic zone where chlorite and epidote occur. Absorption peaks of other principle minerals such as talc, serpentine, amphibole, and carbonate group are mainly detected within the wave length of 2,270 ~ 2,330 nm. This result indicates that the spectra of these minerals need to be carefully interpreted.

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.