• Title/Summary/Keyword: short term exposure limit

Search Result 23, Processing Time 0.027 seconds

Analysis of Exposure Levels for Inorganic Acids in Korea (무기산류에 대한 국내 작업환경측정 현황 분석)

  • Park, Hae Dong;Park, Seung-Hyun;Jung, Kihyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.3
    • /
    • pp.255-265
    • /
    • 2021
  • Objectives: The purpose of this study is to analyze the exposure characteristics of inorganic acids. Methods: We analyzed exposure data (n = 363,146) for six inorganic acids (hydrogen fluoride, hydrogen bromide, hydrogen chloride, phosphoric acid, nitric acid, and sulfuric acid) collected between 2017 and 2019 in South Korea. Measurement characteristics and exposure levels (ELs) were analyzed by inorganic acid, industry category, enterprise size, and measurement year. Results: Measurement percentage dominated in time-weighted average (TWA, 91%) compared to short term exposure limit (STEL) and Ceiling. Most of the measurements (79.7%) were collected from the manufacturing category of industry. Medians of ELs were mostly low (≤3% of the threshold limit), with the exception of sulfuric acid (4.6% of TWA and 10.5% of STEL). The percentages of exceeding 1% of the occupational exposure limits (OELs) in TWA were relatively high for sulfuric acid (35.8%) and hydrogen chloride (16.5%) compared to the other acids (4.2%-6.6%). In addition, the percentages of exceeding 1% of OELs in STEL or Ceiling were higher for sulfuric acid (22.9%), hydrogen chloride (12.3%), and nitric acid (8.2%) compared to the other acids (1.2%-1.9%). The small-sized enterprises showed higher ELs in TWA; contrarily, the large-sized enterprises had higher ELs in STEL or Ceiling. Conclusions: The measurement characteristics and ELs identified in this study could be useful for establishing safety and health policies for inorganic acids.

Workers' Exposure to Airborne Methyl Bromide in the Exporting/Importing Plants and Products Quarantine Company (수출입 식물검역업체 근로자의 공기 중 Methyl Bromide 노출에 관한 연구)

  • Lee, Hyun Seok;Shin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 2008
  • Methyl bromide has been used as a representative fumigant for quarantine, and several poisoning cases have occurred recently by this chemical in Korea. The purpose of this study is to evaluate workers' exposures to airborne methyl bromide in the importing and exporting plant products quarantine companies. Air samples were collected 400/200 mg Anasorb 747TM and were analyzed by gas chromatograph /flame ionization detector according to the Occupational Safety and Health Agency (OSHA) Method PV2040. Geometric mean (GM) and arithmetic mean (AM) of total 27 workers' exposure concentrations to airborne methyl bromide were 1.12 ppm and 0.24 ppm, respectively. Two exposures(12.1 ppm and 12 ppm as 8hr-TWA) of total 27 workers' exposures exceeded the Korean standard (5 ppm) of Ministry Labor, while 4 exposures (15%) exceeded the Threshold Limit Value (TLV) (1 ppm) of American Conference of Governmental Industrial Hygienists (ACGIH). Seven samples (11%) of total 63 short-term air samples exceeded the OSHA Permissible Exposure Limit (PEL) 20 ppm (Ceiling). The opening (management) task in wood fumigation by tent showed the highest short-term exposure concentrations (AM: 18.6 ppm, GM: 0.58 ppm, maximum: 340.7 ppm). The maximum level in treatment task of the same process was 2.01 ppm. Methyl bromide concentrations in opening operation was significantly higher than that in treatment operation (p<0.05). In conclusion, the GM of workers' 8hr-TWA exposures to airborne methyl chloride in the importing/exporting plant quarantine industry was estimated below the ACGIH TLV (1 ppm). However, opening task in the fumigation of wood being covered with tent or fumigation of pant products in container showed the levels exceeding ACGIH TLV (1 ppm), and opening task in the fumigation of wood being covered with tent showed the level exceeding the Korean standard of Ministry of Labor (5 ppm).

A Study on Characteristics of Exposure to Tetrahydrofuran of Manufacturing and Handling Workers (테트라하이드로퓨란 제조 및 취급 근로자의 노출특성에 관한 연구)

  • Chio, Ho Chun;Hong, Jwa Ryung;Lee, Gye Young;Kim, Doo Ho;Park, Chung Yill
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • Objectives: Tetrahydrofuran (THF) is a colorless, water-miscible organic liquid with low viscosity at standard temperature and pressure. THF has been used as a solvent and a precursor for various syntheses of polymers. However, THF is known to irritate to the eyes, skin and mucus membranes. Overexposure by inhalation, ingestion or skin contact may produce nausea, dizziness, headaches, respiratory irritation and possible skin burns. The purpose of this study is to evaluate of the worker exposure and characteristics of workers in the workplaces that use or manufacture THF. Methods: Sixteen factories in Korea, which manufacture or use THF, were selected for this study and a total of 130 air samples including 104 time-weighted average (TWA) samples and 26 short-term exposure limit (STEL) samples, were collected. Air samples were collected with charcoal tube (100mg/50mg) and analyzed by gas chromatograph/flame ionization detector(GC/FID). Results: The TWA concentration of THF was 16.05ppm (GM) at PS script printing, 2.32ppm (GM) at PVC stabilizer, 1.03ppm (GM) at Lithium triethylborohydride, 0.63ppm (GM) at Polytetramethylene ether glycol(PTMEG), 0.42ppm (GM) at Manufacturing THF, 0.13ppm (GM) at Glue and 0.12ppm (GM) at synthetic rubber/resins. Two out of sampes for PS script printing exceeded 50ppm as 8-hour exposure limit of MOEL. The short term exposure to THF was 54.77ppm (GM) at PS script printing, 17.10ppm (GM) at PTMEG, 13.76ppm (GM) at Manufacturing THF, 2.86ppm (GM) at Lithium triethylborohydride, 0.87ppm (GM) at synthetic rubber/resins and 0.13ppm (GM) Glue. We found that the highest exposure process for both the TWA and STEL samples was PS script process. Two samples exceeded 100ppm as short term exposure limit of Ministry of Employment and Labor(MOEL). Conclusions: Characteristic of STEL concentration for THF is considerably different from TWA concentration in workplaces because workers could exposure high concentration of THF in a moment when they work irregularly schedule. So exposure controls for momentary works have to be prepared, and considered the skin absorption and inhale of THF.

A Study on Worker Exposure to Ethylene Oxide in Central Supply Sterilizing Room of Hospital (일부 종합병원 중앙공급실에서의 Ethylene Oxide 노출에 관한 연구)

  • Seo, Sang Ok;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.1
    • /
    • pp.68-86
    • /
    • 1995
  • This study was conducted at five Ethylene Oxide(EO) sterilizing processes in hospitals located in Seoul from August 8 to August 30, 1994. The main purposes of this study were to assess the TWA(Time Weighted Average) and short term exposures to EO and to evaluate factors affecting EO concentrations in sterilizing room. Results are summarized as follows. 1. The TWA concentrations of the sterilizing operators ranged from <0.005ppm to 3.04ppm and those of two sterilizing rooms out of five exceeded 1ppm, the Korean and ACGIH standards. 2. When the door of the sterilizer is opened at the end of the sterilization cycle, the short term concentrations of operators ranged from <0.005ppm to 11.4ppm, and those of three sterilizing room out of five exceeded 5ppm, the ACGIH short term exposure limit(STEL). The short term concentrations of area samples ranged from 0.24ppm to 49.2ppm and those of four sterilizing room out of five exceeded 5ppm. 3. Factors affecting EO exposure level were aeration type, the location of storage site for sterilized item, amount of gas, use period of sterilizer(p<0.005). 4. Following recommendations are suggested to minimize exposure to EO. The use of EO gas should be reduced by using another available sterilization methods, and the sterilizers and gas tank storage site should be isolated from, other work areas. Combination of local and general ventilation system should be installed. Metal carts or baskets for sterilization load should be used, and work environment and medical monitoring should be performed regularly.

  • PDF

The Occupational Exposure Limit for Fluid Aerosol Generated in Metalworking Operations: Limitations and Recommendations

  • Park, Dong-Uk
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The aim of this review was to assess current knowledge related to the occupational exposure limit (OEL) for fluid aerosols including either mineral or chemical oil that are generated in metalworking operations, and to discuss whether their OEL can be appropriately used to prevent several health risks that may vary among metalworking fluid (MWF) types. The OEL (time-weighted average; 5 mg/$m^3$, short-term exposure limit ; 15 mg/$m^3$) has been applied to MWF aerosols without consideration of different fluid aerosol-size fractions. The OEL, is also based on the assumption that there are no significant differences in risk among fluid types, which may be contentious. Particularly, the health risks from exposure to water-soluble fluids may not have been sufficiently considered. Although adoption of The National Institute for Occupational Safety and Health's recommended exposure limit for MWF aerosol (0.5 mg/$m^3$ ) would be an effective step towards minimizing and evaluating the upper respiratory irritation that may be caused by neat or diluted MWF, this would fail to address the hazards (e.g., asthma and hypersensitivity pneumonitis) caused by microbial contaminants generated only by the use of water-soluble fluids. The absence of an OEL for the water-soluble fluids used in approximately 80-90 % of all applicants may result in limitations of the protection from health risks caused by exposure to those fluids.

Exposure Assessment of Hazardous Chemical Agents for Dental Technicians in Ulsan City (울산지역 치과기공사들의 화학적 유해요인 노출 평가)

  • Hong, Youngho;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.215-221
    • /
    • 2011
  • Objectives: This study was conducted to evaluate the exposure level of hazardous chemical agents for dental technicians in Ulsan. Methods: We measured airborne total dusts and metals such as Nickel, Manganese, Cobalt, and Chromium in 10 dental laboratories by the NIOSH Methods 0500 and 7300, respectively. Methyl methacrylate (MMA), a key ingredient in acrylic resin, was also monitored using passive samplers for long-term sampling and Tenax tubes for short-term sampling. Results: Measured levels of all items were below 10% of the Korean exposure limit except for Nickel. The geometric mean concentration and geometric standard deviation of total dust, Nickel, and MMA were $0.14mg/m^3$ (2.16), $165.3{\mu}g/m^3$ (3.31), and 0.2 ppm (2.5) respectively. Airborne Nickel concentration of two dental laboratories exceeded the exposure limit ($1000{\mu}g/m^3$). The major emission sources of Nickel were metal trimming and casting processes. Conclusions: We found that Nickel, a carcinogen, should be controled most urgently to protect dental technicians.

Short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings following sudden low salinity exposure (급격한 저염분 노출에 따른 참돔 Pagrus major 치어의 단기 행동반응 및 내성 한계에 관한 연구)

  • Sung Jin Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.495-506
    • /
    • 2021
  • In this study, using a continuous behavior measurement technique, the short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings to sudden exposure to low salinity in a controlled environment were observed. The activity of the fingerlings suddenly exposed to 21.4, 17.3, and 9.8 psu increased temporarily at the initial exposure to show irregular swimming behavior, but then recovered a stable activity pattern through rapid salinity adaptation. However, the organisms suddenly exposed to 7.3 and 4.3 psu could not withstand the salinity stress, and their swimming behavior was severely disturbed and all individuals died within 48 hours. The findings suggest that red seabream underwent a temporary salinity stress process at the beginning of the exposure to concentrations of 10.0 psu or higher. At these concentrations, osmotic control was possible within at least 11 hours, so stable metabolic activity was also possible. However, organisms suddenly exposed to concentrations below 5.0 psu exceeded the tolerance to low salinity and the sublethal limit. In red seabream exposed to this concentration range, severe behavioral and metabolic disturbances were observed, and death was observed due to osmotic control failure. In conclusion, a salinity range of 5.0 to 10.0 psu can be predicted to correspond to a concentration range in which the osmotic control ability of the red seabream fingerlings is lost, and sub-lethal reactions occur.

Characteristics of Occupational Exposure to Benzene during Turnaround in the Petrochemical Industries

  • Chung, Eun-Kyo;Shin, Jung-Ah;Lee, Byung-Kyu;Kwon, Ji-Woon;Lee, Na-Roo;Chung, Kwang-Jae;Lee, Jong-Han;Lee, In-Seop;Kang, Seong-Kyu;Jang, Jae-Kil
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • Objectives: The level of benzene exposure in the petrochemical industry during regular operation has been well established, but not in turnaround (TA), where high exposure may occur. In this study, the characteristics of occupational exposure to benzene during TA in the petrochemical companies were investigated in order to determine the best management strategies and improve the working environment. This was accomplished by evaluating the exposure level for the workers working in environments where benzene was being produced or used as an ingredient during the unit process. Methods: From 2003 to 2008, a total of 705 workers in three petrochemical companies in Korea were studied. Long- and short-term (< 1 hr) samples were taken during TAs. TA was classified into three stages: shut-down, maintenance and start-up. All works were classified into 12 occupation categories. Results: The long-term geometric mean (GM) benzene exposure level was 0.025 (5.82) ppm (0.005-42.120 ppm) and the short-term exposure concentration during TA was 0.020 (17.42) ppm (0.005-61.855 ppm). The proportions of TA samples exceeding the time-weighted average, occupational exposure level (TWA-OEL in Korea, 1 ppm) and the short-term exposure limit (STEL-OEL, 5 ppm) were 4.1% (20 samples of 488) and 6.0% (13 samples of 217), respectively. The results for the benzene exposure levels and the rates of exceeding the OEL were both statistically significant (p < 0.05). Among the 12 job categories of petrochemical workers, mechanical engineers, plumbers, welders, fieldman and scaffolding workers exhibited long-term samples that exceeded the OEL of benzene, and the rate of exceeding the OEL was statistically significant for the first two occupations (p < 0.05). Conclusion: These findings suggest that the periodic work environment must be assessed during non-routine works such as TA.

Task-based Exposure Assessment among Laboratory workers in Organic Synthesis Laboratories (유기합성실험실 연구자의 단위작업별 노출 평가)

  • Choi, Youngeun;Chu, Yeonhee;Lee, Ikmo;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Objective: Significant concerns have been raised over chemical exposure and potential health risks such as increased cancer mortality among laboratory workers. The aim of this study was to investigate the overall exposure and unit task exposure levels of researchers in organic synthesis laboratories at universities. Methods: Seventy-seven personal Time-weighted average(TWA) samples and 139 task-based samples from four organic synthesis laboratories at two universities were collected over three days. The concentrations of acetone, chloroform, dichloromethane(DCM), diethyl ether, ethyl acetate, n-hexane, tetrahydrofuran(THF), benzene, toluene, and xylene were determined using the GC-FID. Results: The most frequently used chemicals in the laboratories were acetone, DCM, n-hexane, methanol, and THF. Carcinogens such as benzene, chloroform, and DCM were used in one or more laboratories. The TWA full-shift exposures of researchers to acetone was the highest(ND-59.3 ppm). Benzene was observed above the occupational exposure limit in 18-40% of the samples. The levels of exposure to organic solvents were statistically different by task(p<0.05), while washing task was the highest. Washing was not perceived as a part of the real lab tasks. Rather it was considered as simple dish-washing or experimental preparation and performed in an open sink where exposure to organic solvents was unavoidable. TWAs and task-based concentrations were compared by substance, which suggests that TWA-based assessment could not reflect short-term and high concentration exposures. Conclusions: Laboratory workers may be exposed to various organic solvents at levels of concern. TWA-based measurement alone cannot guarantee holistic exposure assessment among lab workers as their exposures are very dependent on their tasks. Further investigation and characterization for specific tasks and overall chronic exposures will help protect lab workers from unnecessary exposure to chemicals while they perform research.

Combustion Emission Gas Analysis and Health Hazard Assessment about P. densiflora and Q. variabilis Surface Fuel Beds (소나무, 굴참나무 낙엽의 연소 방출가스 분석 및 건강 위험성 평가)

  • Kim, Dong-Hyun;Kim, Eung-Sik;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.24-31
    • /
    • 2009
  • Based on fallen leaves of major Korean conifer species 'Pinus densiflora' and major Korean broadleaved species 'Quercus variabilis', this study sought to identify combustion emission gas types and measure their concentration by means of FTIR (Fourier Transform Infrared) spectrometer. As a result, it was found that there were total 13 types of combustion gas detected from fallen leaves of Pinus densiflora and Quercus variabilis, such as carbon monoxide, carbon dioxide, acetic acid, butyl acetate, ethylene, methane, methanol, nitrogen dioxide, ammonia, hydrogen fluoride, sulfur dioxide and hydrogen bromide. Notably, nitrogen monoxide was additionally detected from fallen leaves of Quercus variabilis. It was found that the overall concentration of combustion gas emitted from the fallen leaves of Pinus densiflora was 4.5 times higher than that from fallen leaves of Quercus variabilis. Particularly, it was found that emission concentration of some combustion emission gas types like carbon monoxide, carbon dioxide and butyl acetate exceeded the upper limit of their time-weighted average (TWA, ppm), while the emission concentration of carbon monoxide and carbon dioxide exceeded their short-term exposure limit (STEL, ppm) for both species. Thus, it was found that carbon monoxide and carbon dioxide have higher hazard to health than other gas types, because these two gas types account for higher than 99% of overall gas emission due to combustion of surface fire starting from litter layer in forest.