Browse > Article
http://dx.doi.org/10.11626/KJEB.2021.39.4.495

Short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings following sudden low salinity exposure  

Sung Jin Yoon (Ulleungdo-Docdo Ocean Science Station, Korea Institute of Ocean Science & Technology)
Publication Information
Korean Journal of Environmental Biology / v.39, no.4, 2021 , pp. 495-506 More about this Journal
Abstract
In this study, using a continuous behavior measurement technique, the short-term behavioral responses and tolerance limits of red seabream Pagrus major fingerlings to sudden exposure to low salinity in a controlled environment were observed. The activity of the fingerlings suddenly exposed to 21.4, 17.3, and 9.8 psu increased temporarily at the initial exposure to show irregular swimming behavior, but then recovered a stable activity pattern through rapid salinity adaptation. However, the organisms suddenly exposed to 7.3 and 4.3 psu could not withstand the salinity stress, and their swimming behavior was severely disturbed and all individuals died within 48 hours. The findings suggest that red seabream underwent a temporary salinity stress process at the beginning of the exposure to concentrations of 10.0 psu or higher. At these concentrations, osmotic control was possible within at least 11 hours, so stable metabolic activity was also possible. However, organisms suddenly exposed to concentrations below 5.0 psu exceeded the tolerance to low salinity and the sublethal limit. In red seabream exposed to this concentration range, severe behavioral and metabolic disturbances were observed, and death was observed due to osmotic control failure. In conclusion, a salinity range of 5.0 to 10.0 psu can be predicted to correspond to a concentration range in which the osmotic control ability of the red seabream fingerlings is lost, and sub-lethal reactions occur.
Keywords
sudden low salinity exposure; Pagrus major; behavioral response; tolerance limit; sub-lethal reaction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sundell E, D Morgenroth, A Ekstrom, J Brijs, M Axelsson, A Grans and E Sandblom. 2021. Energetic savings and cardiovascular dynamics of marine euryhaline fish (Myoxocephalus Scorpius) in reduced salinity. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 191:301-311.   DOI
2 USEPA. 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms. United States Environment Protection Agency. Washington, D.C. p. 122.
3 Velasco J, C Gutierrez -Canovas, M Botella -Cruz, D Sanchez-Fernandez, P Arribas, JA Carbonell, A Millan and S Pallares. 2018. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. B-Biol. Sci. 374:20180011.
4 Vij S, K Purushorthaman, PSR Sridatta and DR Jerry. 2020. Transcriptomic analysis of gill and kidney from Asian seabass (Lates calcarifer) acclimated to different salinities reveals pathways involved with euryhalinity. Genes 11:733.
5 Xia C, L Fu, Z Liu, H Lin, L Chen and Y Liu. 2018. Aquatic toxic analysis by monitoring fish behavior using computer vision: A recent progress. J. Toxicol. 2018:1-11.
6 Yuan F, Y Huang, X Chen and E Cheng. 2018. A biological sensor system using computer vision for water quality monitoring. IEEE Access 6:61535-61546.   DOI
7 Yoon SJ. 2021. Critical low temperature and response of behavioral tolerance in red seabream Pagrus major fingerlings exposed to cold shock. JKAIS 22:575-584.
8 Yoon SJ, CK Kim, JG Myoung and WS Kim. 2002. Comparison of oxygen consumption patterns between wild and cultured black rockfish Sebastes schlegeli. Fish. Sci. 69:43-49.
9 Yoon SJ. 2016. Ecological effects of slag extracts on the initial life cycle of the rotifer Brachionus plicatilis and benthic copepod Tigriopus japonicas. Korean Soc. Mar. Environ. Safe. 22:490-499.   DOI
10 Yoon SJ and GS Park. 2011. Toxicity and behavioral changes of medaka (Oryzias latipes) by brine exposure. The Sea 16:39-51.   DOI
11 Yuan F, Y Huang, X Chen and AE Cheng. 2018. A biological sensor system using computer vision for water quality monitoring. IEEE Access 6:61535-61546.   DOI
12 Amin FB, T Farhana, GM Mostakim, MM Zahangir, MM Mishu and MS Islam. 2016. Behavioral and physiological stress responses of Java barb (Barbonymus gonionotus) to environmental salinity challenge. J. Aquacult. Eng. Fish. Res. 2:176-184.
13 Boenf G and P Payan. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 130:411-423.
14 Chevalier J, E Harscoet, M Keller, P Pandard, J Cachot and M Grote. 2015. Exploration of Daphnia behavioral effect profiles induced by a broad range of toxicants with different modes of action. Environ. Toxicol. Chem. 34:1760-1769.   DOI
15 Choi H, YH Park, JW Lee, KY Kwon and UK Hwang. 2020. Toxic effects of new anti-fouling agents (diuron and irgarol) on the embryogenesis and developmental delay of sea urchin, Hemicentrotus pulcherrimus. Korean J. Environ. Biol. 38:518-527.   DOI
16 Cong Y, Y Wang, M Zhang, F Jin, J Mu and Z Li. 2021. Lethal, behavioral, growth and developmental toxicities of alkyl-PAHs and non-alkyl PAHs to early-life stage of brine shrimp, Artemia parthenogenetica. Ecotox. Environ. Safe. 220:1-12.
17 Fukuda S, IJ Kang, J Moroishi and A Nakamura. 2010. The application of entropy for detecting behavioral responses in Japanese medaka (Oryzias latipes) exposed to different toxicants. Environ. Toxicol. 25:446-455.   DOI
18 Creencia LA and T Noro. 2018. Effects of salinity on the growth and mucous cells of the abalone Haliotis diversicolor Reeve, 1846. Int. Aquat. Res. 10:179-189.   DOI
19 Davenport. 1985. Osmotic control in marine animals. Symp. Soc. Exp. Biol. 39:207-244.
20 De Azevedo RV, K dos Santos-Costa, KF de Oliveira, F FloresLopes, EA Teixeira-Lanna and LG Tavares-Braga. 2015. Responses of Nile tilapia to different levels of water salinity. Lat. Am. J. Aquat. Res. 43:828-835.
21 Hamed SS, NS Jiddawi and POJ Bwathondi. 2016. Effect of salinity levels on growth, feed utilization, body composition and digestive enzymes activities of juvenile silver pompano Trachinotus blochii. Int. J. Fish. Aquat. Stud. 4:279-283.
22 Harris LN, DJ Yurkowski, MJH Gilbert, BGT Else, PJ Duke, MMM Ahmed, RF Tallman, AT Fisk and JS Moore. 2020. Depth and temperature preference of anadromous Arctic char Salvelinus alpinus in the Kitikmeot Sea, a shallow and low-salinity area of the Canadian Arctic. Mar. Ecol. Prog. Ser. 634:175-197.   DOI
23 Janech MG, WR Fitzgibbon, DW Ploth, ER Lacy and DH Miller. 2006. Effect of low environmental salinity on plasma composition and renal function on the Atlantic stingray, a euryhaline elasmobranch. Am. J. Physiol. -Renal Physiol. 291:F770-F780.   DOI
24 Kim JH, EH Jeon, SK Kim and YB Hur. 2021. Salinity-mediated changes in hematological parameters, stress, antioxidant responses, and acetylcholinesterase of juvenile olive flounders (Paralichthys olivaceus). Environ. Toxicol. Pharmacol. 83:1-9.
25 Komoroske LM, KM Jeffries, RE Connon, J Dexter, M Hasenbein, C Verhille and NA fangue. 2016. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Ecol. Appl. 9:963-981.
26 Kim JH, HJ Park, IK Hwang, DH Kim, CW Oh, JS Lee and JC Kang. 2016. Alterations of hematological parameters, plasma constituents and antioxidant responses in the sablefish Anoplopoma fimbria depending on salinity. Korean J. Fish. Aquat. Sci. 49:830-837.
27 Kim MJ, HK Lim and MH Jeong. 2015. Effects of low salinity acclimation on oxygen consumption in giant grouper, Epinephelus lanceolatus. J. Fish. Mar. Sci. Edu. 27:526-536.
28 Kim WS, SJ Yoon, JW Kim, JA Lee and TW Lee. 2006. Metabolic response under different salinity and temperature conditions for glass eel Anguilla japonica. Mar. Biol. 149:1209-1215.   DOI
29 Kultz 2015. Physiological mechanisms used by fish to cope with salinity stress. J. Exp. Biol. 218:1907-1914.   DOI
30 Kwak IS, TS Chon, HM Jang, N Chung, JS Kim, SC Koh, SK Lee and YS Kim. 2002. Pattern recognition of the movement tracks of medaka (Oryzias latipes) in response to sub-lethal treatments of insecticide by using artificial neural networks. Environ. Pollut. 120:671-681.   DOI
31 Lee KW and YU Choi. 2016. The availability of tropical copepod Nitocra sp. for marine ecotoxicological evaluation. J. Korea Acad. Indust. Coop. Soc. 17:701-707.
32 Lehtonen TK, BBM Wong and C kvarnemo. 2016. Effects of salinity on nest-building behavior in a marine fish. BMC Ecol. 16:1-9.   DOI
33 Li M, XY Liu and Feng XZ. 2019. Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere 219:155-164.   DOI
34 Paiva F, NC Pauli and E Briski. 2020. Are juveniles as tolerance to salinity stress as adults? A case study of Northern European, Ponto-Caspian and North American species. Divers. Distrib. 26:1627-1641.   DOI
35 Lisboa V, IF Barcarolli, LA Sampaio and A Bianchini. 2015. Effects of salinity on survival, growth and biochemical parameters in juvenile lebranch mullet Mygil liza (Perciformes: Mugilidae). Neotrop. Ichthyol. 13:447-452.   DOI
36 Nahar F, W Haque, DA Ahsan and MG Mustafa. 2016. Effects of salinity changes on growth performance and survival of climbing perch, Anabas testudineus (Bloch, 1795). Dhaka Univ. J. Biol. Sci. 25:65-732.
37 NIWA. 1998. Marine Fish (Rombosolea plebeian). Acute Toxicity Test Protocol. National Institute of Water and Atmospheric Research. Auckland, New Zealand. p. 29.
38 Paterson MS and MR Meador. 1994. Effects of salinity on freshwater fishes in coastal plain drainage in the southeastern U.S. Rev. Fish. Sci. 2:95-121.   DOI
39 Remen M. 2015. Effect of temperature on metabolism behaviour and oxygen requirements of Sparus aurata. Aquac. Environ. Interact. 7:115-123.   DOI
40 Reubush KJ and AG Heath. 1996. Metabolic responses to acute handling by fingerling inland and anadromous striped bass. J. Fish Biol. 49:830-841.   DOI
41 Steele WB, LA Kristofco, J Corrales, GN Saari, SP Haddad, EP Gallagher, TJ Kavanagh, J Kostal, JB Zimmerman, A Voutchkova-Kostal, P Anastas and BW Brooks. 2018. Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. Sci. Total Environ. 640-641:1587-1600.   DOI