• Title/Summary/Keyword: short current

Search Result 2,882, Processing Time 0.027 seconds

Study on Application of Superconducting Fault Current Limiter Considering Risk of Circuit Breaker Short-Circuit Capacity in a Loop Network System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1789-1794
    • /
    • 2014
  • This paper suggests an application method for a superconducting fault current limiter (SFCL) using an evaluation index to estimate the risk regarding the short-circuit capacity of the circuit breaker (CB). Recently, power distribution systems have become more complex to ensure that supply continuously keeps pace with the growth of demand. However, the mesh or loop network power systems suffer from a problem in which the fault current exceeds the short-circuit capacity of the CBs when a fault occurs. Most case studies on the application of the SFCL have focused on its development and performance in limiting fault current. In this study, an analysis of the application method of an SFCL considering the risk of the CB's short-circuit capacitor was carried out in situations when a fault occurs in a loop network power system, where each line connected with the fault point carries a different current that is above or below the short-circuit capacitor of the CB. A loop network power system using PSCAD/EMTDC was modeled to investigate the risk ratio of the CB and the effect of the SFCL on the reduction of fault current through various case studies. Through the risk evaluations of the simulation results, the estimation of the risk ratio is adequate to apply the SFCL and demonstrate the fault current limiting effect.

Development of Evaluating Technology for the Capability of Carrying Short-Circuit Current at Electrical Contacts in EHV Disconnecting Switches (초고압 단로기 접점의 단락전류 통전성능 평가기술 개발)

  • Oh, Yeon-Ho;Song, Ki-Dong;Chong, Jin-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • Extra-high voltage(EHV) disconnecting switch(DS) consists of the electrical contacts and mechanical parts which actuate the contacts. When the short-circuit condition occurs, a large amount of current flows through the electrical contact in disconnecting switches and this causes considerable temperature rise due to Joule heating. If the temperature rise is higher than the melting point of contact material, the DS contact becomes melting and cannot be usable anymore. For this reason, the analysis for capability of carrying short-circuit current in DS contacts must be performed at a design stage. Here, we proposed a numerical technique for evaluating the capability of carrying short-circuit current at electrical contacts in EHV DS. In this numerical approach, the mechanical and thermal analyses were simulated to check the capability of carrying short-circuit current. First, the applied pressure at contact parts was analyzed considering the mechanical properties, and then contact resistance was calculated by an empirical equation. Finally, thermal analysis was performed with resistance variation at electrical contacts. To verify these numerical results, the distributions of temperature in DS were experimentally measured and compared with each other. The results from experiments were agreed well with those from the proposed numerical simulations.

A study on determining arc stability using weight of spatter (스패터 양을 이용한 아크 안정성 판별에 관한 연구)

  • 강성구;문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.41-48
    • /
    • 1997
  • For analyzing the characteristics of arc welding processes, an algorithm is necessary to determine the metal transfer mode, arc stability and weld quality. In this study, the weight of spatter during welding was selected for determining the arc stability, which is very relevant to the occurrence of spatter. Weld spatter occurs mainly at the moment when the short circuit is formed and also when it is broken causing the arc to restrike. Based on this fact, the arc stability can be determined by finding the suitable parameters of welding current and arc voltage which influence the weight of spatter. Through various welding experiments, the peak current, the arcing time, the short circuit time, the current and its slope at the start of short circuit were found mainly to influence the weight of spatter. For the convenient usage, an index was proposed by combining all these parameters. It was found that the index is very effective for determining the arc stability.

  • PDF

Effect of Delay Time Control on the Spatter Generation in $CO_2$ Welding ($CO_2$ 용접에서 스패터 발생에 미치는 지연시간 제어의 영향)

  • 이창한;김희진;강봉용
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.61-68
    • /
    • 1999
  • For the last two decades, waveform control techniques have been successively developed and applied for the inverter welding machines resulting in the substantial reduction of spatter generated in CO₂ welding. One of the constituents commonly involved in those techniques is to delay the instant of current increase to some extent after the initiation of short-circuiting. Although this technique has been known to be quite effective in reducing the spatter generation through the suppression of is instantaneous short circuiting, the delay time necessary for minimum spatter has not been clearly understood. In this study, the control system for varying the delay time was constructed so that the spatter generation rates could be measured over a wide range of delay time, 0.29-2.0 msec. As a result of this study, it was demonstrated that spatter generation rate(SGR) sharply decreased at delay time of 0.6 msec and longer accompanied with the change in characteristics of short circuit mode from the instantaneous short-circuiting(ISC) dominant to normal short-circuiting(NSC) dominant. Another feature that have been found in current waveform of over 0.6msec was the creation of current pulse right after the arc reignition stage. Because of this current pulses weld pool oscillated in wave-like fashion and it looks like to play an important role in developing short circuiting between electrode and weld pool.

  • PDF

Analysis on Fault Current Limiting Characteristics According to Peak Current Limiting Setting of a Flux-Lock Type SFCL with Peak Current Limiting Function (피크전류제한 설정에 따른 피크전류제한 기능을 갖는 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.68-73
    • /
    • 2012
  • In this paper, the fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) with peak current limiting function were analyzed through its short-circuit tests. The setting condition for the peak current limiting operation was derived from its electrical equivalent circuit, which was dependent on the inductance ratio between the third coil and the first coil. Through the analysis on the short-circuit tests for the flux-lock type SFCLs with the different inductance ratio between the third coil and the first coil, the setting value for the peak current limiting operation of the flux-lock type SFCL with peak current limiting function could be confirmed to be adjusted with the variation of the inductance ratio between the third coil and the first coil.

A Study on Modeling of Short-Circuliting Phenomena and Selection of Current Waveform for Reduction of Spatter in GMAW (가스 메탈 아크 용접에서 단락현상 모델링 및 스패터 감소를 위한 전류파형 선정에 관한 연구)

  • 황주호;문형순;나석주;한광수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.57-67
    • /
    • 1996
  • With an expansion in automation of welding processes, emphasis has been shifted from other welding processes to the GMA welding. However, there is a problem with this process that the spatter occurs very frequently. In GMA welding, there are several types in the way of metal transfer from the electrode wire to the weld pool, which have a close relatonship with the spatter genetration. This study was concerned with the spatter occurring in the short-circuiting transfer. In welding with short-circuiting, the electromagnetic force formed by the welding current facilitatics the rupture of the metal bridge between the wire and workpiece and ensures the normal process of the welding process. However, the spatter can be genetrated from the droplet because of the upward magnetic force, when the droplet contacts with the weld pool. The passage of current through the bridge results in the accumulation of the thermal energy, which causes the bridge to explode in the final stage of short-circuiting, thus forming the spatter. Based on the above phenomena in conjunction with other experimental results published, the physical phenomenon related with the occurrence of spatter was modeled and the current waveform was investigated to reduce the spatter. Finally, the fuzzy rule based method was proposed to predict the time of short-circuiting and arcing in the metal transfer.

  • PDF

Short-circuit Analysis by the Application of Control Signal of Power Converter to the Inductive Fault Current Limiter

  • Ahn, Min-Cheol;Hyoungku Kang;Bae, Duck-Kweon;Minseok Joo;Park, Dong-Keun;Lee, Sang-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.25-28
    • /
    • 2004
  • Three-phase inductive superconducting fault current limiter (SFCL) with DC reactor rated on 6.6 $KV_{rms}/200 A_{rms}$ has been developed in Korea. This system consists of one DC reactor, AC/DC power converter, and a three-phase transformer, which is called magnetic core reactor (MCR). This paper deals with the short-circuit analysis of the SFCL. The DC reactor was the HTS solenoid coil whose inductance was 84mH. The power converter was performed as the dual-mode operation for dividing voltage between the rectifying devices. The short-term normal operation (1 see) and short-circuit tests (2∼3 cycles) of this SFCL were performed successfully. In regular short-circuit test, the fault current was limited as 30% of rated short-circuit current at 2 cycles after the fault. The experimental results have a very similar tendency to the simulation results. Using the technique for the fault detection and SCR firing control, the fault current limiting rate of the SFCL was improved. From this research, the parameters for design and manufacture of large-scale SFCL were obtained.

Effect of Energy Barrier Distribution on Current-Induced Magnetization Switching with Short Current Pulses (짧은 전류 펄스를 이용한 전류 유도 자화 반전에서 에너지 장벽 분포의 효과)

  • Kim, Woo-Yeong;Lee, Kyung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.48-51
    • /
    • 2011
  • We performed macro-spin simulation studies of the current-induced magnetization reversal of nanomagnetic elements with short current pulses. A special attention was paid to the effect of the energy barrier on the switching current distribution. The switching current and its distribution increase with decreasing the current pulse-width. The relationship between the energy barrier and switching current distribution is described by the Arrhenius-N$\'{e}$el law at a long pulse-width regime. At a regime of short pulse-width, however, the relationship is left unaddressed. The difficulty to address this issue arises because the magnetization switching with a short current pulse is governed not by the thermal activation but by the precession motion. Therefore, an exact formulation for the short pulse regime by solving the Fokker-Plank equation is needed to understand the result.

A Study on Discrimination between Short-Circuit and Overload based on the Characteristics of the Fusing Current of an Electrical Wire (전선의 용단전류 특성에 근거한 단락과 과부하 판별에 관한 연구)

  • Shong, Kil-Mok;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.176-180
    • /
    • 2007
  • In the case that an overcurrent flows through in electrical wire due to short-circuit or overload, the wire can be fused, thereby causing an electrical fire. In the present article the characteristics of the fusing current of an electrical wire have been studied to discriminate between short-circuit and overload. In the experiment the fusing time was measured as the currents determined by Preece's equation were supplied to bare wires of various diameter. As the results of experiment, the measured fusing currents well satisfied the Onderdonk's equation. By comparing the measured results and the short current the IEC recommends, it is shown that the variable to determine the short current for a bare copper wire, k is appoximately 300. The fusing current of an electrical wire which becomes a short circuit within 5sec can be expressed as a function of diameter based on the value of k. Consequently, the equation for the fusing current provides a criterion to discriminate between short-circuit and overload.

Test of a Current Limiting Module for Verifying of the SFCL Design (초전도 한류기 설계 검증을 위한 초전도 한류 모듈 단락 특성 시험)

  • Yang, S.E.;Kim, W.S.;Lee, J.Y.;Kim, H.;Yu, S.D.;Hyun, O.B.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.13-17
    • /
    • 2012
  • KEPCO Research Institute has been researching a Superconducting Fault Current Limiter (SFCL) which is considered one of solutions of fault current problems with Korea Institute of Machinery & Materials (KIMM) and Hanyang University since 2011. In this paper, we fabricated a current limiting module and conducted electrical short circuit tests for checking the validity of the transmission level SFCL design. Based on the short circuit characteristics of the second generation High Temperature Superconductor (HTS), we analyzed the short circuit characteristics of 3 parallel connected superconducting wires. The structure of the HTS wire is as follows: the stainless steel stabilizer of $100{\mu}m$ is laminated on the superconductor layer and under the substrate, both of which are electrically jointed with solder. We fabricated the current limiting module which has 40 series and 6 parallel connections and studied the short circuit characteristics of the module under various voltage levels.