• Title/Summary/Keyword: shoring

Search Result 42, Processing Time 0.027 seconds

조립형 비계 및 동바리 부재 기준에 관한 연구 (A Study on Standards for Components for Tied Post System Scaffolding and Shoring)

  • 문성오;이상열;윤예빈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.25-26
    • /
    • 2021
  • System scaffolding and shoring are temporary structures in which vertical members, horizontal members, bracing members and trusses are assembled and installed. In order to ensure quality and safety, the quality test shall be carried out in accordance with the Guidelines for Quality Management of Construction Works (MOLIT Notice No. 2020-750). The quality test method (national standard) for Components for tied post system scaffolding and shoring is based on the Korean standards (KS F 8021) and the Safety certification standards (MOEL Notice No. 2021-22). However, the two standards differ in some aspects such as performance standards and etc, so cause confusion when applying them on-site. In addition, the standard for truss are applied only to trusses for shoring and cannot be applied to trusses for scaffolding. Therefore, this study aims to unify the two national standards and establish realistic standards.

  • PDF

시간의존적 거동을 고려한 철근콘크리트 골조의 효율적인 지지시스템 결정 (Determination of Efficient Shoring System in RC Frame Structures Considering Time-Dependent Behavior of Concrete)

  • 김진국;홍수미;곽효경
    • 한국전산구조공학회논문집
    • /
    • 제17권3호
    • /
    • pp.225-239
    • /
    • 2004
  • 이 논문에서는 철근콘크리트 골조 구조물의 시공 시 작용하는 사하중, 활하중, 시공하중 등의 하중에 대한 지지 및 안전한 시공을 위해 설치되는 지지시스템에 대하여 보다 체계적인 분석이 이루어졌다. 지지시스템의 종류, 비계의 강성과 간격 등의 변화에 따른 구조물의 거동특성을 비교, 분석하였고, 기존의 설계규준 및 해석방법과의 비교를 위해 크리프 등의 시간의존적 거동을 고려한 경우와 괴려하지 않은 경우에 대하여 해석이 수행되었으며, 나무 비계를 사용한 경우와 강재 비계를 사용한 경우에 대한 비교 검토가 이루어졌다. 또한, 대표적인 3-경간 구조물에 대한 해석을 수행하여 내측 기둥과 외측 기둥의 부등축소에 따른 영향을 반영한 검토가 이루어졌다. 나아가 다양한 설계인자의 변화에 따른 거동분석을 통해 2SlR 지지시스템이 가장 효율적임을 제시하였다.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part I: Modeling and experiments

  • Huang, Y.L.;Chen, H.J.;Rosowsky, D.V.;Kao, Y.G.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.53-66
    • /
    • 2000
  • This paper proposes a simple numerical model for use in a finite analysis (FEA) of scaffold-shoring systems. The structural model consists of a single set of multiple-story scaffolds with constraints in the out-of-plane direction at every connection joint between stories. Although this model has only two dimensions (termed the 2-D model), it is derived from the analysis of a complete scaffold-shoring system and represents the structural behavior of a complete three-dimensional system. Experimental testing of scaffolds up to three stories in height conducted in the laboratory, along with an outdoor test of a five-story scaffold system, were used to validate the 2-D model. Both failure modes and critical loads were compared. In the comparison of failure modes, the computational results agree very well with the test results. However, in the comparison of critical loads, computational results were consistently somewhat greater than test results. The decreasing trends of critical loads with number of stories in both the test and simulation results were similar. After investigations to explain the differences between the computationally and experimentally determined critical loads, it was recommended that the 2-D model be used as the numerical model in subsequent analysis. In addition, the computational critical loads were calibrated and revised in accordance with the experimental critical loads, and the revised critical loads were then used as load-carrying capacities for scaffold-shoring systems for any number of stories. Finally, a simple procedure is suggested for determining load-carrying capacities of scaffold-shoring systems of heights other than those considered in this study.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part II: An analytical model and its closed-form solution

  • Huang, Y.L.;Kao, Y.G.;Rosowsky, D.V.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.67-79
    • /
    • 2000
  • Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.

가새재 및 부재 연결 조건을 고려한 3차원 가설 동바리 구조물의 신뢰성 해석 (Reliability Analysis of Three-Dimensional Temporary Shoring Structures Considering Bracing Member and Member Connection Condition)

  • 류선호;옥승용;김승민
    • 한국안전학회지
    • /
    • 제34권1호
    • /
    • pp.53-61
    • /
    • 2019
  • This study performs reliability analysis of three-dimensional temporary shoring structures with three different models. The first model represents a field model which does not have diagonal bracing members. The installation of bracing members is often neglected in the field for convenience. The second model corresponds to a design model which has the bracing members with the hinge connection of horizontal and bracing members at joints. The third model is similar to the second model but the hinge connection is replaced with partial rotational stiffness. The reliability analysis results revealed that the vertical members of the three models are safe enough in terms of axial force, but the vertical and horizontal members exhibit a big difference among the three models in terms of combination stress of axial force and bi-axial bending moments. The field model showed significant increase in failure probability for the horizontal member, and thus the results demonstrate that the bracing member should be installed necessarily for the safety of the temporary shoring structures.

동바리 강성 및 슬래브 균열 영향을 고려한 플랫 플레이트의 시공하중 산정 (Calculations of Construction Loads for Flat Plates with Considering Effects of Shoring Stiffness and Slab Cracking)

  • 황현종;김재요;박홍근;홍건호;임주혁;김용남
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.161-162
    • /
    • 2009
  • 본 연구에서는 동바리 강성 및 슬래브 균열의 영향을 고려한 시공하중 산정법을 제안하였다. 동바리 하중 계측결과에 대해 제안법과 기존 시공하중 산정법들을 비교하였다.

  • PDF

거푸집 붕괴사고 주요 요인별 중요도 분석 (Importance Analysis of Major Factors in Formwork Collapse Accident)

  • 박지영;김광희
    • 한국건축시공학회지
    • /
    • 제21권3호
    • /
    • pp.249-256
    • /
    • 2021
  • 건축공사 재해 중 거푸집공사 비중이 매우 크다. 거푸집 공사 재해 예방을 위해 관련 연구가 장기간 걸쳐 진행되고 있지만 지속적인 노력에도 불구하고 재해가 줄지 않고 있다. 따라서 본 연구에서는 AHP 기법을 활용하여 거푸집 붕괴사고 요인별 중요도 분석을 하고 관리할 우선 요소를 정하고자 한다. 분석 결과 시공요인, 관리요인, 설계요인 순으로 가중치가 높게 나타났다. 따라서 시공요인을 우선적으로 관리하면 거푸집 붕괴 재해를 예방할 수 있을 것으로 사료된다.

BIM-BASED PLANNING OF TEMPORARY FACILITIES FOR CONCRETE CONSTRUCTION

  • Kyungki Kim;Jochen Teizer
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.1-6
    • /
    • 2013
  • Concrete construction requires utilization of many temporary facilities such as formwork, shoring, and scaffolding. Appropriate use of these temporary facilities greatly impacts the quality, cost, schedule, and safety of concrete construction. The current practice in design and planning of temporary facilities is often manual, error-prone, and re-active based on construction site layout, status, and progress in the field. Early design and planning of temporary facilities for concrete construction using Building Information Modeling (BIM) technology offers a potential solution. Although some commercially-available software exists that assists in the generation of temporary facility designs, the construction industry lacks tools that support detailed planning and design of many other temporary facilities. This research presents our early work in automating the design and planning of temporary facilities utilizing BIM. Algorithms were developed to automatically assess geometric conditions of work space to detect required temporary facilities and design them. The proposed methodology was implemented in a test model. By automatically incorporating temporary facilities into BIM, more realistic construction models can be created with less effort and errors. Temporary facilities-loaded models can finally be used for communication, bill of materials, scheduling, etc. and as a benchmark for field installation of temporary formwork, shoring, and scaffolding systems.

  • PDF

가시설 안정성 검토에 관한 인천국제공항 시공 사례 연구 (Case Study for the Stability of Temporary Shoring Facilities at Inchon International Airport)

  • 최인걸;조현모;류승철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.97-104
    • /
    • 1999
  • This case study has been prepared to provide the practical data about construction of temporary shoring facilities (i.e. braced sheet pile excavation) and to utilize the case study information effectively for design and construction of future facilities. This case study includes information such as 1) installing measurement devices to monitor the deformation of the sheet pile walls and the subsoil in the vicinity after establishing the criteria for the sheet pile deflection; 2) monitoring the actual movement of the temporary facility after setting up the survey control standard (due to the movement of the temporary facility) : 3) inspecting the suitability of the temporary facility construction: and 4) analyzing and studying the result of the tension test after installing ground anchors.

  • PDF

WWW를 이용한 제품정보의 공유 (Shoring STEP Data over Internet using WWW)

  • 최영;신하용;박명진;이종갑
    • 대한산업공학회지
    • /
    • 제23권3호
    • /
    • pp.597-608
    • /
    • 1997
  • Life cycle product data is very important yet difficult to handle for manufacturing companies. Shoring and exchanging product data over world-wide-web is a part of key technology to implement PDM or CALS. STEP is widely accepted as a standard to represent the life-cycle product model data. Described in this paper is a web browser plug-in that can graphically display and explore product data represented by STEP over internet. By the use of the plug-in (named "npSTEP"), a product model data stored in STEP format on a web server can be displayed on a commonly used web client (browser), such as Netscape navigator, without any format conversion process. Furthermore one can explore the components or attributes of the product model data in hierarchical manner.

  • PDF