• Title/Summary/Keyword: shoot dry weight

Search Result 499, Processing Time 0.028 seconds

Effect of different light sources and ventilation on in vitro shoot growth and rooting of a rare and endangered species, Tsuru-rindo(Tripterospermum japonicum) (희귀 및 멸종위기 식물 덩굴용담의 기내생장에 미치는 광질 및 환기효과)

  • Moon, Heung-Kyu;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Effects of light generated by LEDs on shoot growth and rooting of Tsuru-rindo(Tripterospermum japonicum) were evaluated. Apical shoots(one or two node with 3-4 leaves) were cultured on MS basal medium with 3% sucrose and maintained for four weeks under five different light qualities: fluorescent lamp(F), 100% red LED(R), 70% red LED+30% blue LED(R7B3), 50% red LED+50% blue(R5B5), or 100% blue LED(B). Rooting was promoted by both red light and fluorescent lamp, and the effect was further promoted under the ventilation. Red light enhanced shoot node elongation, whereas blue light appeared to suppress it. Growth of shoots and leaves were enhanced under the ventilation irrespective of the different light qualities. Under the ventilated condition, total fresh weight of plants was highest in R7B3 LED as 257.7 mg per plant. Dry matters, which are used for index of plant growth, were lowest under red light, whereas it was highest under blue light. The dry matter was inclined to getting higher by ascending the ratio of blue light and red light. Total chlorophyll content was highest in both R7B3 LED and R5B5 LED under ventilation as 29.5 and 31.2, respectively. Above results suggest that light quality optimization could be an important factor to foster in vitro growth of the species. Ventilation treatment appeared to be another important factor to induce normal shoot growth and rooting.

Reproductive Growth and Competitive Ecology of Arrowhead(Sagittaria trifolia L.) - 1. Growth and Tuber Formation of Arrowhead under Several Environmental Factors (벗풀(Sagittaria trifolia L.)의 번식생장(繁殖生長) 및 경합생태(競合生態) - 1. 벗풀의 번식생장(繁殖生長))

  • Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.138-150
    • /
    • 1993
  • Experiments were carried out to understand how much do the environmental factors affect growth and tuber formation of arrowhead, Sagittaria trifolia L. The more the light transmittance decreased, the more the numbers of leaves and floral axes decreased. The dry matter weight of tops and the number and the fresh weight of formated tuber were significantly different between the light transmittance of more than 50% and that of less than 30% at the 5% level of DMRT. Plant height, number and width of leaves, and number of floral axis were affected by the Light spectra. And the degree of their effects on growth of arrowhead was different form the light spectrum. The natural light and the clear cellophane film were the most effective to increase the number and the fresh weight of formated tuber and the green spectrum was the least effective to do those. Plant height grown at 0-5cm water depth was shorter than that at 10-20cm water depth. The deeper the water depth was, the lower the leaves number was. The fresh weight and the number of arrowhead tuber were most produced at 0cm water depth and theose were least at 20cm water depth. The shoot growth and the tuber formation of arrowhead was much increased with increase of the application rate of fertilizer. The difference of the transplanted tuber size was not affected at the shoot growth, but tuber formation of arrowhead was increased with increase of the transplanted tuber size. From viewing the effect of temperature after rice heading, the shoot growth and the tuber formation at $35^{\circ}C$ were also higher than those at $25^{\circ}C$.

  • PDF

Reduction of Stress Caused by Drought and Salt in Rice (Oryza sativa L.) Crops through Applications of Selected Plant Extracts and the Physiological Response Mechanisms of Rice

  • Hyun Hwa Park;Young Seon Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.57-57
    • /
    • 2022
  • In many areas of the world, salt damage and drought have had a negative impact on human survival due to a decrease in agricultural productivity. For instance, about 50% of agricultural land will be affected by salt damage by 2050. Biostimulants such as plant extracts can not only increase the nutrient utilization efficiency of plants, but also promote plant growth and increase resistance to abiotic or biotic stress. Therefore, the objective of this study was to determine how selected plant extracts might reduce levels of stress caused by drought and salt and to better understand the physiological response mechanisms of rice plants. In this study, we used Soybean leaves, Soybean stems and Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts were used. These extracts had been used in previous studies and were found to be effective. The materials were dried in a dry oven at 50℃ for 5 days and ground using a blender. Each 50 g of materials was put in 1 L of distilled water, stirred for 24 hours, filtered using 4 layers of mirocloth, and then concentrated using a concentrator. Rice (cv. Hopumbyeo) seeds were immersed and germinated, and then sown in seedbeds filled with commercial soil. In drought experiments, three rice seedlings at 1 week after seeding was transplanted into 100 ml cups filled with commercial soils and grown until the 4-leaf stage. For this experiment, the soil weight in a cup was equalized, and water was allowed to become 100% saturated and then drained for 24 hours. Thereafter, plant extracts at 3% concentrations were applied to the soils. For NaCl treatments, rice plants at 17 days after seeding were treated with either 100 mM NaCl or plant extracts at 1%+ 100 mM NaCl combinations in the growth chamber. Leaf injury, relative water content, photosynthetic efficiency, and chlorophyll contents were measured at 3, 5, and 6 days after treatments. Shoot fresh weight of rice under drought conditions increased 28-37% in response to treatments of Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Shoot fresh weight of rice subjected to 100 mM NaCl treatments also increased by 6-24% in response to Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Compared to the control, rice plants treated with these six extracts and subjected to drought conditions had significantly higher relative water content, Fv/Fm, total chlorophyll and total carotenoids than control plants. With the exception of relative water contents, rice plants treated with the six extracts and subjected to salt stress (100 mM NaCl treatments) had significantly higher Fv/Fm, total chlorophyll and total carotenoids than control plants. However, the type of extract used did not produce significant difference in these parameters. Thus, all the plant extracts used in this study could mitigate drought and NaCl stresses and could also contribute substantially to sustainable crop production.

  • PDF

Effect of Controlled Release Fertilizer on the Growth and Flowering of Oncidium 'Sweet Sugar' (완효성비료 시비가 온시디움 생육과 개화에 미치는 영향)

  • Kim, Si Dong;Lee, Hee Doo;Kim, Ju Hyoung;Kim, Tae Jung
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.246-250
    • /
    • 2009
  • This study was conducted to determine the effect of controlled-release fertilizer on growth of Oncidium. Leaf and pseudobulb length increased with controlled-release fertilizer from 2 g to 3 g treatment compared to hyponex and controlled-release fertilizer I g treatment, while leaf width and number of leaf was not significant among treatments. Plant weight increased with controlled-release fertilizer from 2 g to 3 g treatment compared to hyponex and controlled-release fertilizer I g treatment. Flowering date(bloomed October early) did not show significant difference among treatments. The number of flowers showed the most in controlled-release fertilizer 3 g treatment as 62.4 ea/plant, but was not different significantly among treatments. Flower stem length and width were also non-significant among treatments. Branching numbers increased in the controlled-release fertilizer 2 g and 3 g treatments. Mineral elements of shoot increased from 2 g to 3 g treatment rather than the controlled-release fertilizer 1g treatment. Especially, K content was higher compared to N and P content. Therefore, appropriate controlled-release fertilizer amount for Oncidium was recommended as 2 g.

Effect of High Temperature and Water Management on Agronomic Characters in Rice (고온 및 고온기 물관리방법이 수도생육에 미치는 영향)

  • 이승필;김상경;이광석;최대웅;이상철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 1990
  • These experiments were conducted to determine the effect of high temperature and water managements on growth and yield of rice. Shoot dry weight and percent of fresh roots were decreased when rice plant was exposed to high temperature, and also high temperature treatment decreased yield components of rice through spikelet number at meiotic, filled grain ratio and percent of fertility at heading, and 1,000 grain weight at ripening stage. Nitragen content of the rice varities was decreased by high temperature treatment regardless different growth stage, although Si content increased. Grain yield of rice varieties significantly decreased due to high temperature when rice plants were treated at heading stage followed by ripening stage. meiotic, young panicle initiation, maximum tillering and tillering stage in order. Effect of the continual submerging on temperature increased by 1.1$^{\circ}C$ at daytime and by 3.7$^{\circ}C$ at nighttime, but flowing water irrigation which can maintain optimum temperature reduced plant height and increased dry weight and percent of fresh roots. Flowing water irrigation showed higher yield by 4-8% compared to continual submerging method through increment of yield components such as spikelet number, filled grain ratio and 1,000-grain weight.

  • PDF

Effects of $CO_2$ Enrichment Concentration and Duration on Growth of Bell Pepper (Capsicum annuum L.) (탄산 시비 농도와 시비 시간이 착색단고추 생육에 미치는 영향)

  • Kang, Yun-Im;Lee, Si-Young;Kim, Hak-Joo;Chun, Hee;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.352-357
    • /
    • 2007
  • We investigated effects of concentration and duration were investigated in order to promote efficiency of $CO_2$ enrichment in winter. The treatments were conducted with two levels of $CO_2$ concentration, namely 400 ppm, 700 ppm, two levels of duration, 3 h (9:00-12:00), 6 h (9:00-15:00), and control (nonenrichment $CO_2$). Fresh weight of leaves increased under longer exposure to $CO_2$ and higher $CO_2$ concentration. Fresh weight of stem and root increased under longer exposure to $CO_2$, but decreased under higher $CO_2$ concentration. Total dry weight increased under longer exposure to $CO_2$ and higher $CO_2$ concentration. Combination treatment of longer exposure to $CO_2$ and higher $CO_2$ concentration showed the largest decrease of Root : Shoot dry weight ratio. The $700ppm{\times}6h$ treatment showed higher fruit number and yield than control. The results suggested that the growth under longer exposure to 400 ppm $CO_2$ was better than that under higher $CO_2$ concentration.

Optimum Ratio of $NO_3^-$ to $NH_4^+$ in Nutrient Solution for the Growth of Phalaenopsis Hybrid (팔레놉시스 생육에 적합한 배양액내 $NO_3^-$$NH_4^+$ 비율)

  • Lee, Young-Ran;Lee, Yong-Beom;Yae, Byeong-Woo;Lee, Dong-Soo
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.229-233
    • /
    • 2010
  • This experiment was carried out to find optimum ratio of $NO_3^-$ to $NH_4^+$ in nutrient solution for the growth of Phalaenopsis hybrid and find the effect of the ratio of $NO_3^-$ to $NH_4^+$ on the flower stem (inflorescence) quality. The ratio of $NO_3^-$ to $NH_4^+$ of nutrient solution used in this experiment was 100% : 0%, 90% : 10%, 80% : 20% and 70% : 30%. Phalaenopsis showed better growth when $NH_4^+$ was supplied concurrently with $NO_3^-$ as nitrogen source than supplied with only $NO_3^-$. Especially, increasing the ratio of $NH_4^+$ from 0% to 10% the fresh weight and dry weight of Phalaenopsis hybrid was highest. But, the growth of shoot and root was diminished when the proportion of $NH_4^+$ in nutrient solution was increased from 10% to 30%. Inflorescence length, the number of inflorescence and flower per plant all increased as $NH_4^+$ increased from 0% to 10% but, decreased from 10% to 30%. These results suggest that the optimal ratio of $NO_3^-$ and $NH_4^+$ in nutrient solution for the growth of Phalaenopsis including inflorescence was founded to be 90%:10%.

Optimal Cultivar Selection of Kohlrabi for Hydroponics Culture in a Closed-type Plant Factory System (완전제어형 식물공장내 수경재배용 콜라비 품종 선발)

  • Uoon, Chan-Il;Cha, Mi-Kyung;Jeon, Yoon-A;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.297-300
    • /
    • 2017
  • Plant factory can control artificially the environments for crop cultivation, so they can produce high quality agricultural products all year round. This study was carried to select suitable kohlrabi cultivar for hydroponics in a closed-type plant factory system. We used three cultivars of red kohlrabi, 'Asac kohl', 'Kolibri', and 'Purple king' as plant materials. The artificial light source was LED light, light intensity and photoperiod were $249{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and 12/12 hours (day/night period), respectively. Hydroponic cultivation type was used circulating deep flow technique. At 43 days after transplanting, fresh weight of whole plant and tuber and leaf area were not significantly different among cultivars. Shoot dry weight and tuber dry weight were highest in 'Asac kohl' cultivar, and number of leaves was highest in 'Purple king' cultivar. Sugar content and yield were highest in 'Asac kohl' cultivar. Considering the growth and marketable yields, 'Asac kohl' was the optimal kohlrabi cultivar for hydroponic cultivation in a closed-type plant factory system.

Desalinization Effect of Pennisetum Alopecuroides and Characteristics of Leachate Depending on Calcium Chloride (CaCl2) Concentration

  • Yang, Ji;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.445-453
    • /
    • 2020
  • Background and objective: Calcium chloride (CaCl2) and sodium chloride (NaCl) are commonly used as a deicing agent in South Korea and penetrate the soil on the roadside, causing damage to plants. This study was conducted to investigate the salinity reduction effect of Pennisetum alopecuroides and the chemical characteristics of soil leachate. Methods: The plants were treated with five different concentrations of CaCl2 (0, 1, 2, 5, and 10g·L-1) and were grouped into the Cont., C1, C2, C5, and C10 groups. CaCl2 of 200 m·L-1 was sprayed to each plant once every two weeks. The growth of P. alopecuroides (plant height, leaf length, leaf width and the number of leaves) was measured. The level of EC and pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) in the leachate of soil was monitored. Results: The pH of soil leachate decreased as the CaCl2 concentration increased, and the EC increased significantly. The content of K+ did not change significantly until the concentration of CaCl2 reached 5 g·L-1, but the content of Ca2+, Na+, and Mg2+ significantly increased. The plant height, leaf length, and leaf width of P. alopecuroides showed the highest value in CaCl2 1 g·L-1 followed by CaCl2 2 g·L-1 and the control group. Root fresh weight was the highest in CaCl2 2 g·L-1. On the other hand, there was no change in the shoot fresh weight, dry weight and root dry weight, and P. alopecuroides growth inhibition at the concentration of 5 g·L-1 or higher in the plant height and leaf length. Conclusion: P. alopecuroides is relatively highly salt-tolerant and can improve the salt damaged soil by lowering the content of the salt-based exchangeable K+ ions.

Revegetation of a Lakeside Barren Area by the Application of Plant Growth-promoting Rhizobacteria

  • Ahn, Tae-Seok;Ka, Jong-Ok;Lee, Geon-Hyoung;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.171-174
    • /
    • 2007
  • The growth stimulation of wild plants by several bacterial species showing plant growth-promoting capabilities was examined in a barren lakeside area at Lake Paro, Korea. Microbial numbers and activities in the field soil were monitored for 73 days after inoculation of the bacteria. The acridine orange direct counts for the total soil bacterial populations ranged between $2.0-2.3{\times}10^{9}\;cells/g$ soil and $1.4-1.8{\times}10^{9}\;cells/g$ soil in the inoculated and uninoculated soils, respectively. The numbers of Pseudomonas spp., which is known as a typical plant growth-promoting rhizobacteria, and the total microbial activity were higher in the inoculated soil compared to those in the uninoculated soil. The average shoot and root lengths of the wild plants grown in the inoculated soil were 17.3 cm and 12.4 cm, respectively, and longer than those of 11.4 cm and 8.5 cm in the uninoculated soil. The total dry weight of the harvested wild plants was also higher in the inoculated soil (42.0 g) compared to the uninoculated soil (35.1 g). The plant growth-promoting capabilities of the inoculated bacteria may be used for the rapid revegetation of barren or disturbed land, and as biofertilizer in agriculture.