• Title/Summary/Keyword: shoot density

Search Result 202, Processing Time 0.028 seconds

Soil Properties and Growth Characteristics by Production Periods of Zoysiagrass Sods (뗏장 재배기간에 따른 Zoysiagrass의 생육과 토양의 특성)

  • Han, Jeong-Ji;Lee, Kwang-Soo;Choi, Su-Min;Park, Yong-Bae;Bae, Eun-Ji
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.262-267
    • /
    • 2015
  • In order to establish the efficient sod production and soil management, there is a need to perform research on the growing condition of zoysiagrass on soil environments. With an attempt to identify the growth of zoysiagrass and the chemical characteristics of soil according to different growing seasons, this study was carried out in separate areas where zoysiagrass has been grown for 1 year, 10 years, 20 years, and 30 years. As the growing season became longer, bulk density of the soil was increased, porosity and gaseous phase were decreased. The level of pH was highest in the area where zoysiagrass has been produced for 30 years, whereas total nitrogen and organic matters were found to be the greatest in where zoysiagrass has been produced for 1 year. Accordingly, the chemical properties of soil were deteriorated more in the area with continuous cropping than in the area with 1 year of cropping. As the time period of producing zoysiagrass became longer, growth of shoot and root were decreased. In this study, it is required to produce zoysiagrass through soil improvement in areas that have been used for production for over 10 years.

On the Population Dynamics and Interspecific Competition of Disporum smilacinum and D. viridescens (Liliaceae) in Mt. Nam Park (남산공원 내 애기나리와 큰애기나리 군락의 동태 및 종간 경쟁의 추정)

  • 민병미
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.649-663
    • /
    • 1998
  • The clarify the ecological properties, and to predict change of understory vegetation of mt. Nam Park, population dynamics and interspecific competition of D. smilacinum and D. viridescens, which grow in understory of deciduous broad-leaved forest and pseudo-annuals, were studied from May 20 to May 30 1998. The depth of litter layer, soil moisture content, soil organic matter and soil texture were surveyed in 18 populations (15 D. smilacinum populations and 3 D. viridescens populations). Mean litter layer of d. smilacimum population was thinner than that of D. viridescens populations). Mean litter layer of D. smilacnum population was thinner than that of D. viridescens population. The contents of soil moisture and organic matter of D. smilacinum population were lower than that of D. viridescens population. The D. smilacinum growed in broad range of soil texture but D. viridescens in loamy soil. Because D. smilacinum could tolerate more broad range of soil moisture and soil texture than D. viridescens, the former covered the herb layer in earlier stage and the latter introduced in later stage when rhizome could grow easily. The numbers of individual in two marginal parts were smaller than that in center in same D. smilacinum patch. And the total numbers of individuals grown in (10 ${\times}$ 10)cm were from 0 to 12. The rhizome (subterranean runner) weight, rhizome length, root weight, shoot weight, lea weight and leaf number per subquadrat (cell) increased along the number of individual, that is, increased from marginal part to center. But rhizome weight and rhizome length per individual were vice versa. Therefore, the individuals in marginal part reproduced longer and stronger asexual propagules than that in center. The distribution pattern of D. smilacinum was contageous and that of D. viridescens was random or regular. Therefore, population growth of former was independent on density and that of latter was dependent on density. The distributions of size-class showed normal curves in two population, but the curves based on data of total dry weight showed positive skewness and those of leaf number showed negative skewness The correlation coefficient (CC) values between the properties of each organ were high in two population and significant at 0.1% level. The CC values of D. viridescens were higher of the two. Therefore, the former allocated the energy to each organ stable. The rhizome depth of d. viridescens was 2 times deeper than that of D. smilacinum. And rhizome length and weight of D. viridescens were longer (2 times) or heavier (4 times) than those of D. smilacinum. The patch size of D. viridescens increased 60 cm per year and that of D. smilacinum 30 cm. On this results, the intrinsic increase velocity of d. viridescens patch was 2 times faster than that of d. smilacinum, therefore, on the competition, the former had an advantage over D. smilacinum. The reason why d. viridescens defeated D. smilacinum resulted from that the leaf area of former was 4 times broader than that of latter. in Mt. Nam Park, it was thought that two disporum Population would change with the 3 thpes of environmental change as followings. First, no human impact and increase of soil moisture content resulted in increase of D. viridescens population. Second, mild human impact and similar condition of soil moisture content resulted in slow increase or no changes of D. smilacinum and d. viridescens population. Third, severe human impact and dry condition resulted in decrease or vanishment of two disporum populations.

  • PDF

Experimental Transplantation for the Restoration of Seagrass, Zostera marina L. Bed Around Sinyangseopji Beach in Bangdu Bay, Jeju Island (제주 신양섭지해수욕장 주변 방두만 거머리말 군락 복원을 위한 실험적 이식)

  • LEE, HYUNG WOO;KANG, JEONG CHAN;PARK, JUNG-IM;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.343-355
    • /
    • 2021
  • Eelgrass, Zostera marina L., was widely distributed around Sinyangseopji Beach in Bangdu Bay, on the eastern coast of Jeju Island, until breakwater construction in the late 1990s resulted in its complete loss. Six experimental sites were identified for restoration of the Z. marina bed in Bangdu Bay. Using the staple method, 500 Z. marina shoots were transplanted at each site in January 2019 and 2020. The transplants, along with environmental parameters, were monitored for 10 months following transplantation. There were significant differences in underwater irradiance, water temperature, and salinity among the sites, but all were suitable for Z. marina growth. The Ulva species, an opportunistic alga, appeared in spring and accumulated during summer at all sites; however, there was no significant effect of Ulva species on the survival and growth of the eelgrass transplants. Most of the transplanted Z. marina survived, and after 3 months, the density increased by 112.5-300% due to vegetative propagation, with a rapid rate of increase observed during spring and early summer at all sites. For 1-2 months after transplanting, the Z. marina shoots showed signs of transplant shock, after which the shoot density increased at all sites, confirming that all transplants adapted well to the new environment. However, in both 2019 and 2020, during late summer to early fall, the sites experienced heavy damage from typoons (twice in 2019 and three times in 2020) that hit Bangdu Bay. The transplants at two sites located in the center of Bangdu Bay were completely destroyed, but those at three sites located to the west of the bay showed a 192-312% increase in density. Thus, we confirmed that the Bangdu Bay Z. marina bed can be restored, with the highest probability of success for Z. marina restoration on the western side of Bangdu Bay, which is protected from typhoons.

Studies on the Indigenous Vesicular-Arbuscular Mycorrhizal Fungi(VAMF) in Horticultural Crops Grown Under Greenhouse -III. Effects of the Indigenous VAMF Inoculation on the Early Growth and the Subsquent Growth after Transplanting of Greenhouse Grown Crops (시설원예(施設園藝) 작물(作物)에서 토착(土着) VA균근균(菌根菌)에 관한 연구(硏究) -III. 토착(土着) VA 균근균(菌根菌) 접종효과)

  • Sohn, Bo-Kyoon;Yang, Won-Mo;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 1992
  • Effects of the indigenous Vesicular-arbuscular mycurrhizal fungi(VAMF) on early growth response of greenhouse grown crops were experimented. This study was done to evaluate the benefit of indigenous VAMF inoculation on the early growth and the subsequent growth after transplanting of some crops such as cucumber, tomato, hot pepper, eggplant, and melon. Leaf area, shoot dry weight, and plant length of mycorrhizal greenhouse crops showed the tendency of significant or no significant increase over control plants receiving no inoculation. The levels of VA mycorrhizal colonization were increased with plant growth, and infection rates of horticultural crop except hot pepper around one week after transplanting were decreased, while that of 8 weeks after emergence of mycorrhizal seedlings were increased again and infected by around 50% at harvesting time. In spore densities in the rhizosphere soil of craps experimented, the number of spore ranged from $72.7{\pm}26.3$ to $100{\pm}10.3g^1$ on dried soil basis and high density showed in both cucumber and tomato. Total nitrogen contents in shoots were lower in the mycorrhizal plants than non-mycorrhizal one, whereas P uptake in mycorrhizal hot pepper and tomato were highly ramarkable. The K contents in the shoots of mycorrhizal cucumber and eggplent were highly enhanced. Inoculation of the indigenous VAMF enhanced shoot Ca and Mg in both tomoto and melon. The contents of Fe, Zn, Mn and Cu in shoots of mycorrhizal crops were higher than non-mycorrhizal plants and vice versa in case of eggplent. Inoculation of the indigenous VAMF to horticultural crops were effective for alleviation of transplanting shock, and pretransplanting infection improved subsequent growth by reducing the time required for establishment of a functional mycorrhizal symbiosis following transplanting.

  • PDF

Effects of green manures in organic vegetable production (유기농 채소생산을 위한 녹비작물 도입효과)

  • Lee, Sang-Min;Lee, Y.;Yun, H.B.;Sung, J.K.;Lee, Y.H.;Lee, S.B.;Choi, K.J.;Kim, K.H.
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.77-101
    • /
    • 2009
  • Organic farming in Korea has mainly focused on producing vegetables in plastic film house and cereals in paddy field. For high productivity of vegetables and cereals, most Korean farmers have not applied crop rotation in the cropping system. Thus, this study was carried out to evaluate the effects of crop rotation on the yield of red pepper and green onion, the changes in soil fertility and the potential as green manure of rye and hairy vetch. Rye and hairy vetch were cultivated for winter season every year, and directly incorporated into the soil. The yield of red pepper fruits in organic farming using crop rotation (OFCR) decreased 23 to 36% compared with conventional farming system (CFS). Whereas, green onion showed the increased yield of about 13%. In OFCR, total carbon content of soil was higher, however available phosphate content lower than conventional farming. As a result of measuring the bulk density of soil, OFCR and CFS were 1.26 to $1.35Mg/m^3$ and 1.37 to $1.42Mg/m^3$, respectively. Carbon and nitrogen contents of microbial biomass in OFCR were obviously higher compared with the CFS. In the plot cultivated rye for winter season, the weed germination was strongly reduced (about 52 %). Balance of macro nutrient elements, nitrogen and phosphate, in the application of rye and hairy vetch had a minus value. For potassium, the output value was higher than the input one, therefore organic farming under red pepper-rye or hairy vetch systems requires applying additional potassium input. Also, we selected two hairy vetch varieties of cv. Hungvillosa and Ostsaat which can be adapt at Korea climate. In order to estimate a yield of green manures, the weight of shoot and root was measured. The ratio of shoot and root between rye and hairy vetch showed 0.88 and 1.91, respectively. The potential levels of nitrogen, phosphate and potassium which could be supplied from rye were 7.7, 7.8 and 21.9 kg/10a and from hairy vetch were 17.0, 8.6 and 22.9 kg/10a, respectively. So we recommend that cultivating hairy vetch, as a nutrient supplier, and rye, as an amendment to enhance the soil physical property, for winter season be practical method in Korea organic farming system.

  • PDF

Effect of Different Nutrient Solution and Light Quality on Growth and Glucosinolate Contents of Watercress in Hydroponics (배양액의 종류 및 광질이 물냉이의 생육 및 Glucosinolate 함량에 미치는 영향)

  • Choi, Jae Yun;Kim, Sung Jin;Bok, Kwon Jeong;Lee, Kwang Ya;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.371-380
    • /
    • 2018
  • Aim of this study was to investigate the effects of different nutrient solutions and various light qualities generated by LED on the growth and glucosinolates contents of watercress (Nasturtium officinale) grown under hydroponics for 3 weeks. The seeds of watercress were sown on crushed rockwool media and raised them for two weeks. They were transplanted in a semi-DFT (deep flow technique) hydroponics system. A controlled-environment room was maintained at $20{\pm}1^{\circ}C$ and $16{\pm}1^{\circ}C$ temperatures and $65{\pm}10%$ and $75{\pm}10%$ relative humidity (day and night, respectively), with a provided photosynthetic photon flux density (PPFD) of $180{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 16/8h. To find out the best kinds of nutrient solutions for growing watercress, Otsuka House 1A (OTS), Horticultural Experiment Station in Korea (HES), and Netherland's Proefstaion voor Bloemisterij en Gasgroente (PBG) were adapted with initial EC of $1.0-1.3dS{\cdot}m^{-1}$ and pH of 6.2, irradiating PPFD with fluorescent lamps (Ex-1). Either monochromatic (W10 and R10) or mixed LEDs (R5B1, R3B1, R2B1G1, and W2B1G1) were irradiated with a differing ratio of each LED's PPFD to understanding light quality on the growth and glucosinolates contents of watercress (Ex-2). Although significant difference in the shoot growth of watercress was not found among three nutrient solutions treatments, but the root fresh weight increased by 13.7% and 55.1% in PBG and OTS compared to HES, respectively. OTS increased the gluconasturtiin content by 96% and 65% compared to PBG and HES. Compared with the white light (W10), the red light (R10) showed a 101.3% increase in the shoot length of watercress. Increasing blue light portion positively affected plant growth. The content of total glucosinolates in watercress was increased by 144.5% and 70% per unit dry weight in R3B1 treatment compared with R2B1G1 and W10 treatments, respectively. The growth and total glucosinolates contents of the watercress were highest under R3B1 among six light qualities.

Primary Production and Litter Decomposition of Macrophytes in the Sihwa Constructed Wetlands (시화호 인공습지에서 수생식물의 유기물 생산과 낙엽 분해)

  • Choi, Kwangsoon;Kim, Ho Joon;Kim, Dong Sub;Cho, Kang Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.347-356
    • /
    • 2013
  • To provide the information for the wetland management considering the water treatment ability of macrophytes, the growth characteristics and primary production by reed (Phragmites australis) and cattail (Typha angustifolia), and the decomposition rate of organic matter produced were investigated in two sub-wetlands (Banweol and Donhwa wetlands) of the Sihwa Constructed Wetland (CW) with different chemistry of inflows. The shoot height of P. australis and Typha angustifolia began to increase in March, and reached its peaks in July and August (340cm and 320cm, respectively). The shoot density of P. australis ranging $100{\sim}170EA/m^2$ was higher than that of T. angustifolia (max. $78EA/m^2$). Standing biomass of P. australis ranged from $1,350{\sim}1,980gDM/m^2$, with maximal biomass in Banwol Upper Wetland. And it was larger in upper wetlands than lower wetlands. On the other hand standing biomass of T. angustifolia ($1,940gDM/m^2$) was similar to that of P. australis in Banwol Upper Wetland. Primary productivity of P. australis was in the order of Banwol Upper Wetland ($2,050gDM/m^2/yr$) > Donghwa Lower Wetland ($1,840gDM/m^2/yr$) > Banwol Lowerr Wetland ($1,570gDM/m^2/yr$) ${\fallingdotseq}$ Donghwa Lower Wetland ($1,540gDM/m^2/yr$), and that of T. angustifolia ($2,210gDM/m^2/yr$) was higher than P. australis. Annual production of organic matter produced by P. australis and T. angustifolia was 845 ton DM/yr (423 ton C/yr), and about 90% was comprised of that by P. australis. From the litter decomposition rate (k) (P. australis: leaf 0.0062/day, stem 0.0018/day; T. angustifolia: leaf 0.0031/day, stem 0.0018/day), leaf was rapid degraded compare to stem in both P. australis and T. angustifolia. The litter decomposition rate of leaf was two times rapid P. australis than T. angustifolia, whereas that of stem was same in both. Annual litter decomposition amount of P. australis than T. angustifolia was 285 ton C/yr(67.3% of organic matter produced by macrophytes), indicating that 32.7% of organic matter produced by macrophytes is accumulated in the Sihwa CW.

Growth and Contents of Inorganic Nutrient during Cultivation of Zoysiagrass (한국잔디의 재배기간 중 생육과 무기성분 함량 변화)

  • Bae, Eun-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Lee, Sang-Myeong;Yang, Geun-Mo;Huh, Moo-Ryong
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.82-87
    • /
    • 2013
  • This research will be utilized as a base line data by researching on growth and the accumulation of inorganic nutrients during the cultivation period of zoysiagrass and also to establish a cultivation strategy of zoysiagrass. It involves the management such as fertilizer and mowing which ultimately led to the difference of growth and accumulation of inorganic nutrients. The accumulation of inorganic nutrients after mowing, the amount of accumulation was small when compared to the amount lost for the shoot, rhizome and root. Difference in the accumulation of inorganic nutrients, but as for K, Ca and Mg accumulation it shows similar aspects to N accumulation. The orders of inorganic nutrients in zoysiagrass were N > K > P > Ca > Mg. The characteristics of inorganic nutrients absorption of such zoysiagrass acts as the foundation of cultivation, and in the aspect of making decisions on the fertilization amount and soil management, it is closely related to the requirement on nutrients. In order to increase the productivity based on the zoysiagrass's growth and density rate improvement, accumulation of inorganic nutrients per growth period needs to be analyzed, and supplying nutrients in an efficient method suitable to the growth period is advisable, so such basic research was necessary.

Effect of Application of Plant Growth Regulator on Growth Characteristics in Bupleurum falcatum L. (식물생장조절물질 처리에 따른 시호의 생육특성)

  • Lee, Ho;Kim, Kil-Ung;Son, Tae-Kwon;Lee, Ji-Ean;Lee, Sang-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.5
    • /
    • pp.344-352
    • /
    • 2002
  • This study was conducted to determine the optimum planting dates and density of one year old Bupleurum falcatum L. to improve its quality. Furthermore, the effect of cultural methods and plant growth regulators$(GA_3,\;IAA,\;Kinetin)$ on the quality of B. falcatum were also investigated. In this study, Jeongseon cultivar collected in Korea and Mishima cultivar introduced from Japan were used. Some of the results obtained are as follows. Jeongseon cultivar showed less stem branches and shoot weight compared to Mishima. However, Jeongseon cultivar showed tall plant height, high root fresh and dry weight, and high levels of SSa and TSS, but low SSc content than that of Mishima. Although fresh and dried root weight of both cultivars were not affected by plant growth regulators treatment. compared with the untreated one, increasement of TSS content were made by $GA_3$ 100 ppm, IAA 50 ppm or 10 ppm and kinetin 10 ppm treatment in Jeongseon cultivar, and by $GA_3$ 10 ppm and IAA 100 ppm or 10ppm treatment in Mishima cultivar applied on June 1.

Optimum Culture Conditions of Sweetpotato Stem Cut for Shoot-transplant Production during Winter (고구마 줄기묘의 원동육묘 적정조건)

  • 안영섭;정병춘;정미남;오용비;송연상;민경수;강윤규
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.6
    • /
    • pp.382-386
    • /
    • 2000
  • This study was conducted to know the optimum conditions for overwinter culture of sweetpotato stems in PE film house. The stems will be used as transplant shoots in the next year instead of sprouts produced from storage roots. Sweetpotato stems were cut at field on harvest season and planted in PE film house under three different conditions of PE film mulching, tunnel, or mulching plus tunnel in comparison with the non-treatment of PE film on October 10 and November 10. The survival rate of sweetpotato stems, which was evaluated on April 10 after overwinter, was higher in the treatment planted on October 10 than that on November 10, and with PE film treatments, it was higher in tunnel or mulching plus tunnel than that of the non-treatment of PE film. The survival rate of sweetpotato stems to planting densities was 95-96% in 10$\times$2cm (333 stems/$m^2$) or in 10$\times$4cm (250 stems/$m^2$) when compared with 10$\times$2cm (500 stems/$m^2$). The survival rate under low temperature showed 95% until 20 days at 5$\pm$1$^{\circ}C$, and 0% within 5 days at 2$\pm$1$^{\circ}C$. From these results, it was concluded that there were optimum conditions that cutting time is middle October, planting density is 10$\times$3cm, and minimum maintenance temperature is 5$^{\circ}C$ in growing conditions of sweetpotato stems. Root yield produced by trans-planting shoots using the stems was similar to yield by shoots produced from roots, and the survival rate was not different among varieties.

  • PDF